Cargando…
Image-Based Deep Neural Network for Individualizing Radiotherapy Dose Is Transportable Across Health Systems
We developed a deep neural network that queries the lung computed tomography–derived feature space to identify radiation sensitivity parameters that can predict treatment failures and hence guide the individualization of radiotherapy dose. In this article, we examine the transportability of this mod...
Autores principales: | Randall, James, Teo, P. Troy, Lou, Bin, Shah, Jainil, Patel, Jyoti, Kamen, Ali, Abazeed, Mohamed E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166468/ https://www.ncbi.nlm.nih.gov/pubmed/36652661 http://dx.doi.org/10.1200/CCI.22.00100 |
Ejemplares similares
-
Deterministic small‐scale undulations of image‐based risk predictions from the deep learning of lung tumors in motion
por: Teo, P. Troy, et al.
Publicado: (2022) -
Real-world applications of deep convolutional neural networks in diagnostic cancer imaging
por: Elhalawani, Hesham, et al.
Publicado: (2020) -
Direct binding of the Kex2p cytosolic tail to the VHS domain of yeast Gga2p facilitates TGN to prevacuolar compartment transport and is regulated by phosphorylation
por: De, Mithu, et al.
Publicado: (2013) -
Heart within a Heart
por: Jain, Tarun, et al.
Publicado: (2016) -
Boosting radiotherapy dose calculation accuracy with deep learning
por: Xing, Yixun, et al.
Publicado: (2020)