Cargando…
Fast cross-linking by DOPA2 promotes the capturing of a stereospecific protein complex over nonspecific encounter complexes
Transient and weak protein–protein interactions are essential to many biochemical reactions, yet are technically challenging to study. Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) provides a powerful tool in the analysis of such interactions. Central to this tech...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biophysics Reports Editorial Office
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166511/ https://www.ncbi.nlm.nih.gov/pubmed/37287876 http://dx.doi.org/10.52601/bpr.2022.220014 |
Sumario: | Transient and weak protein–protein interactions are essential to many biochemical reactions, yet are technically challenging to study. Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) provides a powerful tool in the analysis of such interactions. Central to this technology are chemical cross-linkers. Here, using two transient heterodimeric complexes EIN/HPr and EIIA(Glc)/EIIB(Glc) as our model systems, we evaluated the effects of two amine-specific homo-bifunctional cross-linkers with different reactivities. We showed previously that DOPA2 (di-ortho-phthalaldehyde with a di-ethylene glycol spacer arm) cross-links proteins 60–120 times faster than DSS (disuccinimidyl suberate). We found that though most of the intermolecular cross-links of either cross-linker are consistent with the encounter complexes (ECs), an ensemble of short-lived binding intermediates, more DOPA2 intermolecular cross-links could be assigned to the stereospecific complex (SC), the final lowest-energy conformational state for the two interacting proteins. Our finding suggests that faster cross-linking captures the SC more effectively and cross-linkers of different reactivities potentially probe protein–protein interaction dynamics across multiple timescales. |
---|