Cargando…

Convergent validity of video-based observer rating of drowsiness, against subjective, behavioral, and physiological measures

Driver drowsiness is a widely recognized cause of motor vehicle accidents. Therefore, a reduction in drowsy driving crashes is required. Many studies evaluating the crash risk of drowsy driving and developing drowsiness detection systems, have used observer rating of drowsiness (ORD) as a reference...

Descripción completa

Detalles Bibliográficos
Autores principales: Uchiyama, Yuji, Sawai, Shunichiroh, Omi, Takuhiro, Yamauchi, Koichiro, Tamura, Kimimasa, Sakata, Takuya, Nakajima, Kiyofumi, Sakai, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166535/
https://www.ncbi.nlm.nih.gov/pubmed/37155637
http://dx.doi.org/10.1371/journal.pone.0285557
Descripción
Sumario:Driver drowsiness is a widely recognized cause of motor vehicle accidents. Therefore, a reduction in drowsy driving crashes is required. Many studies evaluating the crash risk of drowsy driving and developing drowsiness detection systems, have used observer rating of drowsiness (ORD) as a reference standard (i.e. ground truth) of drowsiness. ORD is a method of human raters evaluating the levels of driver drowsiness, by visually observing a driver. Despite the widespread use of ORD, concerns remain regarding its convergent validity, which is supported by the relationship between ORD and other drowsiness measures. The objective of the present study was to validate video-based ORD, by examining correlations between ORD levels and other drowsiness measures. Seventeen participants performed eight sessions of a simulated driving task, verbally responding to Karolinska sleepiness scale (KSS), while infra-red face video, lateral position of the participant’s car, eye closure, electrooculography (EOG), and electroencephalography (EEG) were recorded. Three experienced raters evaluated the ORD levels by observing facial videos. The results showed significant positive correlations between the ORD levels and all other drowsiness measures (i.e., KSS, standard deviation of the lateral position of the car, percentage of time occupied by slow eye movement calculated from EOG, EEG alpha power, and EEG theta power). The results support the convergent validity of video-based ORD as a measure of driver drowsiness. This suggests that ORD might be suitable as a ground truth for drowsiness.