Cargando…

Tailoring vapor film beneath a Leidenfrost drop

For a drop on a very hot solid surface, a vapor film will form beneath the drop, which has been discovered by Leidenfrost in 1756. The vapor escaping from the Leidenfrost film causes uncontrollable flows, and actuates the drop to move around. Recently, although numerous strategies have been used to...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, An, Li, Huizeng, Lyu, Sijia, Zhao, Zhipeng, Xue, Luanluan, Li, Zheng, Li, Kaixuan, Li, Mingzhu, Sun, Chao, Song, Yanlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167315/
https://www.ncbi.nlm.nih.gov/pubmed/37156802
http://dx.doi.org/10.1038/s41467-023-38366-z
_version_ 1785038637990150144
author Li, An
Li, Huizeng
Lyu, Sijia
Zhao, Zhipeng
Xue, Luanluan
Li, Zheng
Li, Kaixuan
Li, Mingzhu
Sun, Chao
Song, Yanlin
author_facet Li, An
Li, Huizeng
Lyu, Sijia
Zhao, Zhipeng
Xue, Luanluan
Li, Zheng
Li, Kaixuan
Li, Mingzhu
Sun, Chao
Song, Yanlin
author_sort Li, An
collection PubMed
description For a drop on a very hot solid surface, a vapor film will form beneath the drop, which has been discovered by Leidenfrost in 1756. The vapor escaping from the Leidenfrost film causes uncontrollable flows, and actuates the drop to move around. Recently, although numerous strategies have been used to regulate the Leidenfrost vapor, the understanding of surface chemistry for modulating the phase-change vapor dynamics remains incomplete. Here, we report how to rectify vapor by “cutting” the Leidenfrost film using chemically heterogeneous surfaces. We demonstrate that the segmented film cut by a Z-shaped pattern can spin a drop, since the superhydrophilic region directly contacts the drop and vaporizes the water, while a vapor film is formed on the superhydrophobic surrounding to jet vapor and reduce heat transfer. Furthermore, we reveal the general principle between the pattern symmetry design and the drop dynamics. This finding provides new insights into the Leidenfrost dynamics modulation, and opens a promising avenue for vapor-driven miniature devices.
format Online
Article
Text
id pubmed-10167315
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101673152023-05-10 Tailoring vapor film beneath a Leidenfrost drop Li, An Li, Huizeng Lyu, Sijia Zhao, Zhipeng Xue, Luanluan Li, Zheng Li, Kaixuan Li, Mingzhu Sun, Chao Song, Yanlin Nat Commun Article For a drop on a very hot solid surface, a vapor film will form beneath the drop, which has been discovered by Leidenfrost in 1756. The vapor escaping from the Leidenfrost film causes uncontrollable flows, and actuates the drop to move around. Recently, although numerous strategies have been used to regulate the Leidenfrost vapor, the understanding of surface chemistry for modulating the phase-change vapor dynamics remains incomplete. Here, we report how to rectify vapor by “cutting” the Leidenfrost film using chemically heterogeneous surfaces. We demonstrate that the segmented film cut by a Z-shaped pattern can spin a drop, since the superhydrophilic region directly contacts the drop and vaporizes the water, while a vapor film is formed on the superhydrophobic surrounding to jet vapor and reduce heat transfer. Furthermore, we reveal the general principle between the pattern symmetry design and the drop dynamics. This finding provides new insights into the Leidenfrost dynamics modulation, and opens a promising avenue for vapor-driven miniature devices. Nature Publishing Group UK 2023-05-08 /pmc/articles/PMC10167315/ /pubmed/37156802 http://dx.doi.org/10.1038/s41467-023-38366-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Li, An
Li, Huizeng
Lyu, Sijia
Zhao, Zhipeng
Xue, Luanluan
Li, Zheng
Li, Kaixuan
Li, Mingzhu
Sun, Chao
Song, Yanlin
Tailoring vapor film beneath a Leidenfrost drop
title Tailoring vapor film beneath a Leidenfrost drop
title_full Tailoring vapor film beneath a Leidenfrost drop
title_fullStr Tailoring vapor film beneath a Leidenfrost drop
title_full_unstemmed Tailoring vapor film beneath a Leidenfrost drop
title_short Tailoring vapor film beneath a Leidenfrost drop
title_sort tailoring vapor film beneath a leidenfrost drop
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167315/
https://www.ncbi.nlm.nih.gov/pubmed/37156802
http://dx.doi.org/10.1038/s41467-023-38366-z
work_keys_str_mv AT lian tailoringvaporfilmbeneathaleidenfrostdrop
AT lihuizeng tailoringvaporfilmbeneathaleidenfrostdrop
AT lyusijia tailoringvaporfilmbeneathaleidenfrostdrop
AT zhaozhipeng tailoringvaporfilmbeneathaleidenfrostdrop
AT xueluanluan tailoringvaporfilmbeneathaleidenfrostdrop
AT lizheng tailoringvaporfilmbeneathaleidenfrostdrop
AT likaixuan tailoringvaporfilmbeneathaleidenfrostdrop
AT limingzhu tailoringvaporfilmbeneathaleidenfrostdrop
AT sunchao tailoringvaporfilmbeneathaleidenfrostdrop
AT songyanlin tailoringvaporfilmbeneathaleidenfrostdrop