Cargando…
Comparing resting state and task-based EEG using machine learning to predict vulnerability to depression in a non-clinical population
Major Depressive Disorder (MDD) affects a large portion of the population and levies a huge societal burden. It has serious consequences like decreased productivity and reduced quality of life, hence there is considerable interest in understanding and predicting it. As it is a mental disorder, neura...
Autores principales: | Kaushik, Pallavi, Yang, Hang, Roy, Partha Pratim, van Vugt, Marieke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167316/ https://www.ncbi.nlm.nih.gov/pubmed/37156879 http://dx.doi.org/10.1038/s41598-023-34298-2 |
Ejemplares similares
-
Decoding the cognitive states of attention and distraction in a real-life setting using EEG
por: Kaushik, Pallavi, et al.
Publicado: (2022) -
Distinguishing vigilance decrement and low task demands from mind‐wandering: A machine learning analysis of EEG
por: Jin, Christina Yi, et al.
Publicado: (2020) -
A pilot study of machine learning of resting-state EEG and depression in Parkinson’s disease
por: Espinoza, Arturo I., et al.
Publicado: (2022) -
Predicting task-general mind-wandering with EEG
por: Jin, Christina Yi, et al.
Publicado: (2019) -
Abnormalities in resting-state EEG microstates are a vulnerability marker of migraine
por: Li, Yansong, et al.
Publicado: (2022)