Cargando…

Hemodynamic and recirculation performance of dual lumen cannulas for venovenous extracorporeal membrane oxygenation

Venovenous extracorporeal membrane oxygenation (ECMO) can be performed with two single lumen cannulas (SLCs) or one dual-lumen cannula (DLC) where low recirculation fraction ([Formula: see text] ) is a key performance criterion. DLCs are widely believed to have lower [Formula: see text] , though the...

Descripción completa

Detalles Bibliográficos
Autores principales: Parker, Louis P., Svensson Marcial, Anders, Brismar, Torkel B., Broman, Lars Mikael, Prahl Wittberg, Lisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167322/
https://www.ncbi.nlm.nih.gov/pubmed/37156961
http://dx.doi.org/10.1038/s41598-023-34655-1
Descripción
Sumario:Venovenous extracorporeal membrane oxygenation (ECMO) can be performed with two single lumen cannulas (SLCs) or one dual-lumen cannula (DLC) where low recirculation fraction ([Formula: see text] ) is a key performance criterion. DLCs are widely believed to have lower [Formula: see text] , though these have not been directly compared. Similarly, correct positioning is considered critical although its impact is unclear. We aimed to compare two common bi-caval DLC designs and quantify [Formula: see text] in several positions. Two different commercially available DLCs were sectioned, measured, reconstructed, scaled to 27Fr and simulated in our previously published patient-averaged computational model of the right atrium (RA) and venae cavae at 2–6 L/min. One DLC was then used to simulate ± 30° and ± 60° rotation and ± 4 cm insertion depth. Both designs had low [Formula: see text] (< 7%) and similar SVC/IVC drainage fractions and pressure drops. Both cannula reinfusion ports created a high-velocity jet and high shear stresses in the cannula (> 413 Pa) and RA (> 52 Pa) even at low flow rates. Caval pressures were abnormally high (16.2–23.9 mmHg) at low flow rates. Rotation did not significantly impact [Formula: see text] . Short insertion depth increased [Formula: see text] (> 31%) for all flow rates whilst long insertion only increased [Formula: see text] at 6 L/min (24%). Our results show that DLCs have lower [Formula: see text] compared to SLCs at moderate-high flow rates (> 4 L/min), but high shear stresses. Obstruction from DLCs increases caval pressures at low flow rates, a potential reason for increased intracranial hemorrhages. Cannula rotation does not impact [Formula: see text] though correct insertion depth is critical.