Cargando…
A stimulus‐contingent positive feedback loop enables IFN‐β dose‐dependent activation of pro‐inflammatory genes
Type I interferons (IFN) induce powerful antiviral and innate immune responses via the transcription factor, IFN‐stimulated gene factor (ISGF3). However, in some pathological contexts, type I IFNs are responsible for exacerbating inflammation. Here, we show that a high dose of IFN‐β also activates a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167482/ https://www.ncbi.nlm.nih.gov/pubmed/36929731 http://dx.doi.org/10.15252/msb.202211294 |
_version_ | 1785038688030294016 |
---|---|
author | Wilder, Catera L Lefaudeux, Diane Mathenge, Raisa Kishimoto, Kensei Zuniga Munoz, Alma Nguyen, Minh A Meyer, Aaron S Cheng, Quen J Hoffmann, Alexander |
author_facet | Wilder, Catera L Lefaudeux, Diane Mathenge, Raisa Kishimoto, Kensei Zuniga Munoz, Alma Nguyen, Minh A Meyer, Aaron S Cheng, Quen J Hoffmann, Alexander |
author_sort | Wilder, Catera L |
collection | PubMed |
description | Type I interferons (IFN) induce powerful antiviral and innate immune responses via the transcription factor, IFN‐stimulated gene factor (ISGF3). However, in some pathological contexts, type I IFNs are responsible for exacerbating inflammation. Here, we show that a high dose of IFN‐β also activates an inflammatory gene expression program in contrast to IFN‐λ3, a type III IFN, which elicits only the common antiviral gene program. We show that the inflammatory gene program depends on a second, potentiated phase in ISGF3 activation. Iterating between mathematical modeling and experimental analysis, we show that the ISGF3 activation network may engage a positive feedback loop with its subunits IRF9 and STAT2. This network motif mediates stimulus‐specific ISGF3 dynamics that are dependent on ligand, dose, and duration of exposure, and when engaged activates the inflammatory gene expression program. Our results reveal a previously underappreciated dynamical control of the JAK–STAT/IRF signaling network that may produce distinct biological responses and suggest that studies of type I IFN dysregulation, and in turn therapeutic remedies, may focus on feedback regulators within it. |
format | Online Article Text |
id | pubmed-10167482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101674822023-05-10 A stimulus‐contingent positive feedback loop enables IFN‐β dose‐dependent activation of pro‐inflammatory genes Wilder, Catera L Lefaudeux, Diane Mathenge, Raisa Kishimoto, Kensei Zuniga Munoz, Alma Nguyen, Minh A Meyer, Aaron S Cheng, Quen J Hoffmann, Alexander Mol Syst Biol Articles Type I interferons (IFN) induce powerful antiviral and innate immune responses via the transcription factor, IFN‐stimulated gene factor (ISGF3). However, in some pathological contexts, type I IFNs are responsible for exacerbating inflammation. Here, we show that a high dose of IFN‐β also activates an inflammatory gene expression program in contrast to IFN‐λ3, a type III IFN, which elicits only the common antiviral gene program. We show that the inflammatory gene program depends on a second, potentiated phase in ISGF3 activation. Iterating between mathematical modeling and experimental analysis, we show that the ISGF3 activation network may engage a positive feedback loop with its subunits IRF9 and STAT2. This network motif mediates stimulus‐specific ISGF3 dynamics that are dependent on ligand, dose, and duration of exposure, and when engaged activates the inflammatory gene expression program. Our results reveal a previously underappreciated dynamical control of the JAK–STAT/IRF signaling network that may produce distinct biological responses and suggest that studies of type I IFN dysregulation, and in turn therapeutic remedies, may focus on feedback regulators within it. John Wiley and Sons Inc. 2023-03-17 /pmc/articles/PMC10167482/ /pubmed/36929731 http://dx.doi.org/10.15252/msb.202211294 Text en © 2023 The Authors. Published under the terms of the CC BY 4.0 license. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Wilder, Catera L Lefaudeux, Diane Mathenge, Raisa Kishimoto, Kensei Zuniga Munoz, Alma Nguyen, Minh A Meyer, Aaron S Cheng, Quen J Hoffmann, Alexander A stimulus‐contingent positive feedback loop enables IFN‐β dose‐dependent activation of pro‐inflammatory genes |
title | A stimulus‐contingent positive feedback loop enables IFN‐β dose‐dependent activation of pro‐inflammatory genes |
title_full | A stimulus‐contingent positive feedback loop enables IFN‐β dose‐dependent activation of pro‐inflammatory genes |
title_fullStr | A stimulus‐contingent positive feedback loop enables IFN‐β dose‐dependent activation of pro‐inflammatory genes |
title_full_unstemmed | A stimulus‐contingent positive feedback loop enables IFN‐β dose‐dependent activation of pro‐inflammatory genes |
title_short | A stimulus‐contingent positive feedback loop enables IFN‐β dose‐dependent activation of pro‐inflammatory genes |
title_sort | stimulus‐contingent positive feedback loop enables ifn‐β dose‐dependent activation of pro‐inflammatory genes |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167482/ https://www.ncbi.nlm.nih.gov/pubmed/36929731 http://dx.doi.org/10.15252/msb.202211294 |
work_keys_str_mv | AT wildercateral astimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT lefaudeuxdiane astimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT mathengeraisa astimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT kishimotokensei astimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT zunigamunozalma astimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT nguyenminha astimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT meyeraarons astimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT chengquenj astimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT hoffmannalexander astimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT wildercateral stimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT lefaudeuxdiane stimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT mathengeraisa stimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT kishimotokensei stimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT zunigamunozalma stimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT nguyenminha stimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT meyeraarons stimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT chengquenj stimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes AT hoffmannalexander stimuluscontingentpositivefeedbackloopenablesifnbdosedependentactivationofproinflammatorygenes |