Cargando…

Growth responses and physiological and biochemical changes in five ornamental plants grown in urban lead‐contaminated soils

An increasing concentration of lead (Pb) in urban contaminated soil due to anthropogenic activities has been a global issue threatening human health. The use of urban ornamental plants as phytoremediation of Pb‐contaminated soil is a new choice. In the present experiment, the physiological and bioch...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Xiliang, Zhang, Chenxiang, Chen, Weifeng, Zhu, Yihao, Wang, Yueying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168045/
https://www.ncbi.nlm.nih.gov/pubmed/37284132
http://dx.doi.org/10.1002/pei3.10013
Descripción
Sumario:An increasing concentration of lead (Pb) in urban contaminated soil due to anthropogenic activities has been a global issue threatening human health. The use of urban ornamental plants as phytoremediation of Pb‐contaminated soil is a new choice. In the present experiment, the physiological and biochemical response of five ornamental plants to increase in concentrations of C(4)H(6)O(4)Pb·H(2)O in the soil were measured to investigate these plans’ Pb tolerance strategies and abilities. Our results showed that Pb stress significantly inhibited the growth and the biomass of all the plants. The root activity (RA), net photosynthetic rate (P (n)), and chlorophyll (Chl) content in Pb‐stressed leaves were significantly decreased, whereas the leaf proline (Pro), soluble sugar (SS), and membrane stability index (MSI) were remarkable increased compared with those in the control group. By application of all‐subsets regression and linear regression, the reduction in photosynthetic capacity in the five plants is mainly due to the decrease in the leaf Chl content caused by Pb stress. The bioconcentration factor (BCF) in Canna generalis was greater than 1, while in the other plants were lower than 1, suggesting that Canna generalis had the highest Pb accumulation ability. The translocation factor (TF) in all the plants were lower than 1, suggesting that Pb preferentially accumulated in the external part of roots. By calculating the comprehensive evaluation value (CEV), Iris germanica L. was found to be the most sensitive species, and Canna generalis was the most tolerant species, to Pb stress among the five ornamental plants.