Cargando…
Plant–soil feedback responses of four dryland crop species under greenhouse conditions
Plant–soil feedbacks (PSFs) give a mechanistic understanding on how soil properties established by previous plant species go on to influence the performance of the same or different species in monoculture, intercropping or crop rotation systems. We hypothesized that different dryland crops such as Z...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168064/ https://www.ncbi.nlm.nih.gov/pubmed/37284207 http://dx.doi.org/10.1002/pei3.10035 |
_version_ | 1785038794567712768 |
---|---|
author | Mushonga, Knowledge Steyn, Joachim M. Swart, Wijnand J. van der Waals, Jacquie E. |
author_facet | Mushonga, Knowledge Steyn, Joachim M. Swart, Wijnand J. van der Waals, Jacquie E. |
author_sort | Mushonga, Knowledge |
collection | PubMed |
description | Plant–soil feedbacks (PSFs) give a mechanistic understanding on how soil properties established by previous plant species go on to influence the performance of the same or different species in monoculture, intercropping or crop rotation systems. We hypothesized that different dryland crops such as Zea mays L., Helianthus annuus L., Phaseolus vulgaris L., and Glycine max L. (Merr.) will have soil legacies that are related to the crop type. We used a two‐phase experiment to test plant performance in soils previously cultivated with the same or different plant species under greenhouse conditions. The positive plant growth for all species in their own soil microbiota suggests that mutualists had a greater impact on plant performance than pathogens. The consistent positive soil–feedback results of P. vulgaris were strongly associated with their own beneficial soil microbiota, meaning that the conditioning phase legacy of mutualists and decomposers were more significant than pathogens under monoculture. Despite successful nodulation in sterilized and inoculated soils, G. max unexpectedly showed neutral and insignificant positive plant feedbacks, respectively. Helianthus annuus was superior to other crop species in creating active carbon stocks and an enzymatically active soil for the next crop. Microbial biomass results suggest that raising fungal relative to bacterial biomass can be achieved by increasing the frequency of H. annuus in rotation sequences. However, more studies are necessary to evaluate whether these elevated ratios promote or depress plant performance under field conditions. This study showed that relative to other dryland crops, H. annuus seems to have the potential of increasing fungal to bacterial ratios, raising legacies in active carbon stocks and soil microbial activity that may be crucial to successional planting in dryland systems. |
format | Online Article Text |
id | pubmed-10168064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101680642023-06-06 Plant–soil feedback responses of four dryland crop species under greenhouse conditions Mushonga, Knowledge Steyn, Joachim M. Swart, Wijnand J. van der Waals, Jacquie E. Plant Environ Interact Research Articles Plant–soil feedbacks (PSFs) give a mechanistic understanding on how soil properties established by previous plant species go on to influence the performance of the same or different species in monoculture, intercropping or crop rotation systems. We hypothesized that different dryland crops such as Zea mays L., Helianthus annuus L., Phaseolus vulgaris L., and Glycine max L. (Merr.) will have soil legacies that are related to the crop type. We used a two‐phase experiment to test plant performance in soils previously cultivated with the same or different plant species under greenhouse conditions. The positive plant growth for all species in their own soil microbiota suggests that mutualists had a greater impact on plant performance than pathogens. The consistent positive soil–feedback results of P. vulgaris were strongly associated with their own beneficial soil microbiota, meaning that the conditioning phase legacy of mutualists and decomposers were more significant than pathogens under monoculture. Despite successful nodulation in sterilized and inoculated soils, G. max unexpectedly showed neutral and insignificant positive plant feedbacks, respectively. Helianthus annuus was superior to other crop species in creating active carbon stocks and an enzymatically active soil for the next crop. Microbial biomass results suggest that raising fungal relative to bacterial biomass can be achieved by increasing the frequency of H. annuus in rotation sequences. However, more studies are necessary to evaluate whether these elevated ratios promote or depress plant performance under field conditions. This study showed that relative to other dryland crops, H. annuus seems to have the potential of increasing fungal to bacterial ratios, raising legacies in active carbon stocks and soil microbial activity that may be crucial to successional planting in dryland systems. John Wiley and Sons Inc. 2020-12-07 /pmc/articles/PMC10168064/ /pubmed/37284207 http://dx.doi.org/10.1002/pei3.10035 Text en © 2020 The Authors. Journal of Plant‐Environment Interactions Published by John Wiley & Sons Ltd https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Mushonga, Knowledge Steyn, Joachim M. Swart, Wijnand J. van der Waals, Jacquie E. Plant–soil feedback responses of four dryland crop species under greenhouse conditions |
title | Plant–soil feedback responses of four dryland crop species under greenhouse conditions |
title_full | Plant–soil feedback responses of four dryland crop species under greenhouse conditions |
title_fullStr | Plant–soil feedback responses of four dryland crop species under greenhouse conditions |
title_full_unstemmed | Plant–soil feedback responses of four dryland crop species under greenhouse conditions |
title_short | Plant–soil feedback responses of four dryland crop species under greenhouse conditions |
title_sort | plant–soil feedback responses of four dryland crop species under greenhouse conditions |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168064/ https://www.ncbi.nlm.nih.gov/pubmed/37284207 http://dx.doi.org/10.1002/pei3.10035 |
work_keys_str_mv | AT mushongaknowledge plantsoilfeedbackresponsesoffourdrylandcropspeciesundergreenhouseconditions AT steynjoachimm plantsoilfeedbackresponsesoffourdrylandcropspeciesundergreenhouseconditions AT swartwijnandj plantsoilfeedbackresponsesoffourdrylandcropspeciesundergreenhouseconditions AT vanderwaalsjacquiee plantsoilfeedbackresponsesoffourdrylandcropspeciesundergreenhouseconditions |