Cargando…
Excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests
Land carbon cycle components in an Earth system model (ESM) play a crucial role in the projections of forest ecosystem responses to climate/environmental changes. Evaluating models from the viewpoint of observations is essential for an improved understanding of model performance and for identifying...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168094/ https://www.ncbi.nlm.nih.gov/pubmed/37283728 http://dx.doi.org/10.1002/pei3.10025 |
_version_ | 1785038801463148544 |
---|---|
author | Tei, Shunsuke Sugimoto, Atsuko |
author_facet | Tei, Shunsuke Sugimoto, Atsuko |
author_sort | Tei, Shunsuke |
collection | PubMed |
description | Land carbon cycle components in an Earth system model (ESM) play a crucial role in the projections of forest ecosystem responses to climate/environmental changes. Evaluating models from the viewpoint of observations is essential for an improved understanding of model performance and for identifying uncertainties in their outputs. Herein, we evaluated the land net primary production (NPP) for circumboreal forests simulated with 10 ESMs in Phase 5 of the Coupled Model Intercomparison Project by comparisons with observation‐based indexes for forest productivity, namely, the composite version 3G of the normalized difference vegetation index (NDVI3g) and tree‐ring width index (RWI). These indexes show similar patterns in response to past climate change over the forests, i.e., a one‐year time lag response and smaller positive responses to past climate changes in comparison with the land NPP simulated by the ESMs. The latter showed overly positive responses to past temperature and/or precipitation changes in comparison with the NDVI3g and RWI. These results indicate that ESMs may overestimate the future forest NPP of circumboreal forests (particularly for inland dry regions, such as inner Alaska and Canada, and eastern Siberia, and for hotter, southern regions, such as central Europe) under the expected increases in both average global temperature and precipitation, which are common to all current ESMs. |
format | Online Article Text |
id | pubmed-10168094 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101680942023-06-06 Excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests Tei, Shunsuke Sugimoto, Atsuko Plant Environ Interact Research Articles Land carbon cycle components in an Earth system model (ESM) play a crucial role in the projections of forest ecosystem responses to climate/environmental changes. Evaluating models from the viewpoint of observations is essential for an improved understanding of model performance and for identifying uncertainties in their outputs. Herein, we evaluated the land net primary production (NPP) for circumboreal forests simulated with 10 ESMs in Phase 5 of the Coupled Model Intercomparison Project by comparisons with observation‐based indexes for forest productivity, namely, the composite version 3G of the normalized difference vegetation index (NDVI3g) and tree‐ring width index (RWI). These indexes show similar patterns in response to past climate change over the forests, i.e., a one‐year time lag response and smaller positive responses to past climate changes in comparison with the land NPP simulated by the ESMs. The latter showed overly positive responses to past temperature and/or precipitation changes in comparison with the NDVI3g and RWI. These results indicate that ESMs may overestimate the future forest NPP of circumboreal forests (particularly for inland dry regions, such as inner Alaska and Canada, and eastern Siberia, and for hotter, southern regions, such as central Europe) under the expected increases in both average global temperature and precipitation, which are common to all current ESMs. John Wiley and Sons Inc. 2020-07-01 /pmc/articles/PMC10168094/ /pubmed/37283728 http://dx.doi.org/10.1002/pei3.10025 Text en © 2020 The Authors. Journal of Plant‐Environment Interactions Published by John Wiley & Sons Ltd https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Tei, Shunsuke Sugimoto, Atsuko Excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests |
title | Excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests |
title_full | Excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests |
title_fullStr | Excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests |
title_full_unstemmed | Excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests |
title_short | Excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests |
title_sort | excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168094/ https://www.ncbi.nlm.nih.gov/pubmed/37283728 http://dx.doi.org/10.1002/pei3.10025 |
work_keys_str_mv | AT teishunsuke excessivepositiveresponseofmodelsimulatedlandnetprimaryproductiontoclimatechangesovercircumborealforests AT sugimotoatsuko excessivepositiveresponseofmodelsimulatedlandnetprimaryproductiontoclimatechangesovercircumborealforests |