Cargando…
DeepComBat: A Statistically Motivated, Hyperparameter-Robust, Deep Learning Approach to Harmonization of Neuroimaging Data
Neuroimaging data from multiple batches (i.e. acquisition sites, scanner manufacturer, datasets, etc.) are increasingly necessary to gain new insights into the human brain. However, multi-batch data, as well as extracted radiomic features, exhibit pronounced technical artifacts across batches. These...
Autores principales: | Hu, Fengling, Lucas, Alfredo, Chen, Andrew A., Coleman, Kyle, Horng, Hannah, Ng, Raymond W.S., Tustison, Nicholas J., Davis, Kathryn A., Shou, Haochang, Li, Mingyao, Shinohara, Russell T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168207/ https://www.ncbi.nlm.nih.gov/pubmed/37163042 http://dx.doi.org/10.1101/2023.04.24.537396 |
Ejemplares similares
-
Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization
por: Hu, Fengling, et al.
Publicado: (2023) -
Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data()
por: Beer, Joanne C., et al.
Publicado: (2020) -
Improved generalized ComBat methods for harmonization of radiomic features
por: Horng, Hannah, et al.
Publicado: (2022) -
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
por: Torbati, Mahbaneh Eshaghzadeh, et al.
Publicado: (2021) -
Mitigating site effects in covariance for machine learning in neuroimaging data
por: Chen, Andrew A., et al.
Publicado: (2021)