Cargando…
Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and non-coding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168233/ https://www.ncbi.nlm.nih.gov/pubmed/37163069 http://dx.doi.org/10.1101/2023.04.25.538249 |
_version_ | 1785038820136189952 |
---|---|
author | Stein, Ewa M. Wang, Suxuan Dailey, Katherine Gravel, Chandra M Wang, Shiying Olejniczak, Mikołaj Berry, Katherine E |
author_facet | Stein, Ewa M. Wang, Suxuan Dailey, Katherine Gravel, Chandra M Wang, Shiying Olejniczak, Mikołaj Berry, Katherine E |
author_sort | Stein, Ewa M. |
collection | PubMed |
description | RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and non-coding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ’s FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA’s terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70 and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs. |
format | Online Article Text |
id | pubmed-10168233 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-101682332023-05-10 Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ Stein, Ewa M. Wang, Suxuan Dailey, Katherine Gravel, Chandra M Wang, Shiying Olejniczak, Mikołaj Berry, Katherine E bioRxiv Article RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and non-coding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ’s FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA’s terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70 and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs. Cold Spring Harbor Laboratory 2023-04-25 /pmc/articles/PMC10168233/ /pubmed/37163069 http://dx.doi.org/10.1101/2023.04.25.538249 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Stein, Ewa M. Wang, Suxuan Dailey, Katherine Gravel, Chandra M Wang, Shiying Olejniczak, Mikołaj Berry, Katherine E Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ |
title | Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ |
title_full | Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ |
title_fullStr | Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ |
title_full_unstemmed | Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ |
title_short | Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ |
title_sort | biochemical and genetic dissection of the rna-binding surface of the fino domain of escherichia coli proq |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168233/ https://www.ncbi.nlm.nih.gov/pubmed/37163069 http://dx.doi.org/10.1101/2023.04.25.538249 |
work_keys_str_mv | AT steinewam biochemicalandgeneticdissectionofthernabindingsurfaceofthefinodomainofescherichiacoliproq AT wangsuxuan biochemicalandgeneticdissectionofthernabindingsurfaceofthefinodomainofescherichiacoliproq AT daileykatherine biochemicalandgeneticdissectionofthernabindingsurfaceofthefinodomainofescherichiacoliproq AT gravelchandram biochemicalandgeneticdissectionofthernabindingsurfaceofthefinodomainofescherichiacoliproq AT wangshiying biochemicalandgeneticdissectionofthernabindingsurfaceofthefinodomainofescherichiacoliproq AT olejniczakmikołaj biochemicalandgeneticdissectionofthernabindingsurfaceofthefinodomainofescherichiacoliproq AT berrykatherinee biochemicalandgeneticdissectionofthernabindingsurfaceofthefinodomainofescherichiacoliproq |