Cargando…

Nuclear receptor signaling via NHR-49/MDT-15 regulates stress resilience and proteostasis in response to reproductive and metabolic cues

The ability to sense and respond to proteotoxic insults declines with age, leaving cells vulnerable to chronic and acute stressors. Reproductive cues modulate this decline in cellular proteostasis to influence organismal stress resilience in C. elegans. We previously uncovered a pathway that links t...

Descripción completa

Detalles Bibliográficos
Autores principales: Sala, Ambre J., Grant, Rogan A., Imran, Ghania, Morton, Claire, Brielmann, Renee M., Bott, Laura C., Watts, Jennifer, Morimoto, Richard I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168274/
https://www.ncbi.nlm.nih.gov/pubmed/37162952
http://dx.doi.org/10.1101/2023.04.25.537803
Descripción
Sumario:The ability to sense and respond to proteotoxic insults declines with age, leaving cells vulnerable to chronic and acute stressors. Reproductive cues modulate this decline in cellular proteostasis to influence organismal stress resilience in C. elegans. We previously uncovered a pathway that links the integrity of developing embryos to somatic health in reproductive adults. Here, we show that the nuclear receptor NHR-49, a functional homolog of mammalian peroxisome proliferator-activated receptor alpha (PPARα), regulates stress resilience and proteostasis downstream of embryo integrity and other pathways that influence lipid homeostasis, and upstream of HSF-1. Disruption of the vitelline layer of the embryo envelope, which activates a proteostasis-enhancing inter-tissue pathway in somatic tissues, also triggers changes in lipid catabolism gene expression that are accompanied by an increase in fat stores. NHR-49 together with its co-activator MDT-15 contributes to this remodeling of lipid metabolism and is also important for the elevated stress resilience mediated by inhibition of the embryonic vitelline layer as well as by other pathways known to change lipid homeostasis, including reduced insulin-like signaling and fasting. Further, we show that increased NHR-49 activity is sufficient to suppress polyglutamine aggregation and improve stress resilience in an HSF-1-dependent manner. Together, our results establish NHR-49 as a key regulator that links lipid homeostasis and cellular resilience to proteotoxic stress.