Cargando…
The Influence of Brain MRI Defacing Algorithms on Brain-Age Predictions via 3D Convolutional Neural Networks
In brain imaging research, it is becoming standard practice to remove the face from the individual’s 3D structural MRI scan to ensure data privacy standards are met. Face removal - or ‘defacing’ - is being advocated for large, multi-site studies where data is transferred across geographically divers...
Autores principales: | Cali, Ryan J., Bhatt, Ravi R., Thomopoulos, Sophia I., Gadewar, Shruti, Gari, Iyad Ba, Chattopadhyay, Tamoghna, Jahanshad, Neda, Thompson, Paul M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168305/ https://www.ncbi.nlm.nih.gov/pubmed/37163066 http://dx.doi.org/10.1101/2023.04.28.538724 |
Ejemplares similares
-
A Comprehensive Corpus Callosum Segmentation Tool for Detecting Callosal Abnormalities and Genetic Associations from Multi Contrast MRIs
por: Gadewar, Shruti P., et al.
Publicado: (2023) -
A reproducibility evaluation of the effects of MRI defacing on brain segmentation
por: Gao, Chenyu, et al.
Publicado: (2023) -
Multisite test–retest reliability and compatibility of brain metrics derived from FreeSurfer versions 7.1, 6.0, and 5.3
por: Haddad, Elizabeth, et al.
Publicado: (2022) -
Impact of defacing on automated brain atrophy estimation
por: Rubbert, Christian, et al.
Publicado: (2022) -
Predicting Brain Amyloid Positivity from T1 weighted brain MRI and MRI-derived Gray Matter, White Matter and CSF maps using Transfer Learning on 3D CNNs
por: Chattopadhyay, Tamoghna, et al.
Publicado: (2023)