Cargando…

AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials

Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion criteria and endpoints. However, guidelines for scoring key features have led to variability in interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI...

Descripción completa

Detalles Bibliográficos
Autores principales: Iyer, Janani S., Pokkalla, Harsha, Biddle-Snead, Charles, Carrasco-Zevallos, Oscar, Lin, Mary, Shanis, Zahil, Le, Quang, Juyal, Dinkar, Pouryahya, Maryam, Pedawi, Aryan, Hoffman, Sara, Elliott, Hunter, Leidal, Kenneth, Myers, Robert P., Chung, Chuhan, Billin, Andrew N., Watkins, Timothy R., Resnick, Murray, Wack, Katy, Glickman, Jon, Burt, Alastair D., Loomba, Rohit, Sanyal, Arun J., Montalto, Michael C., Beck, Andrew H., Taylor-Weiner, Amaro, Wapinski, Ilan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168404/
https://www.ncbi.nlm.nih.gov/pubmed/37162870
http://dx.doi.org/10.1101/2023.04.20.23288534
_version_ 1785038848378535936
author Iyer, Janani S.
Pokkalla, Harsha
Biddle-Snead, Charles
Carrasco-Zevallos, Oscar
Lin, Mary
Shanis, Zahil
Le, Quang
Juyal, Dinkar
Pouryahya, Maryam
Pedawi, Aryan
Hoffman, Sara
Elliott, Hunter
Leidal, Kenneth
Myers, Robert P.
Chung, Chuhan
Billin, Andrew N.
Watkins, Timothy R.
Resnick, Murray
Wack, Katy
Glickman, Jon
Burt, Alastair D.
Loomba, Rohit
Sanyal, Arun J.
Montalto, Michael C.
Beck, Andrew H.
Taylor-Weiner, Amaro
Wapinski, Ilan
author_facet Iyer, Janani S.
Pokkalla, Harsha
Biddle-Snead, Charles
Carrasco-Zevallos, Oscar
Lin, Mary
Shanis, Zahil
Le, Quang
Juyal, Dinkar
Pouryahya, Maryam
Pedawi, Aryan
Hoffman, Sara
Elliott, Hunter
Leidal, Kenneth
Myers, Robert P.
Chung, Chuhan
Billin, Andrew N.
Watkins, Timothy R.
Resnick, Murray
Wack, Katy
Glickman, Jon
Burt, Alastair D.
Loomba, Rohit
Sanyal, Arun J.
Montalto, Michael C.
Beck, Andrew H.
Taylor-Weiner, Amaro
Wapinski, Ilan
author_sort Iyer, Janani S.
collection PubMed
description Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion criteria and endpoints. However, guidelines for scoring key features have led to variability in interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI)-based measurement (AIM) tool for scoring NASH histology (AIM-NASH). AIM-NASH predictions for NASH Clinical Research Network (CRN) grades of necroinflammation and stages of fibrosis aligned with expert consensus scores and were reproducible. Continuous scores produced by AIM-NASH for key histological features of NASH correlated with mean pathologist scores and with noninvasive biomarkers and strongly predicted patient outcomes. In a retrospective analysis of the ATLAS trial, previously unmet pathological endpoints were met when scored by the AIM-NASH algorithm alone. Overall, these results suggest that AIM-NASH may assist pathologists in histologic review of NASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient therapeutic response.
format Online
Article
Text
id pubmed-10168404
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-101684042023-05-10 AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials Iyer, Janani S. Pokkalla, Harsha Biddle-Snead, Charles Carrasco-Zevallos, Oscar Lin, Mary Shanis, Zahil Le, Quang Juyal, Dinkar Pouryahya, Maryam Pedawi, Aryan Hoffman, Sara Elliott, Hunter Leidal, Kenneth Myers, Robert P. Chung, Chuhan Billin, Andrew N. Watkins, Timothy R. Resnick, Murray Wack, Katy Glickman, Jon Burt, Alastair D. Loomba, Rohit Sanyal, Arun J. Montalto, Michael C. Beck, Andrew H. Taylor-Weiner, Amaro Wapinski, Ilan medRxiv Article Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion criteria and endpoints. However, guidelines for scoring key features have led to variability in interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI)-based measurement (AIM) tool for scoring NASH histology (AIM-NASH). AIM-NASH predictions for NASH Clinical Research Network (CRN) grades of necroinflammation and stages of fibrosis aligned with expert consensus scores and were reproducible. Continuous scores produced by AIM-NASH for key histological features of NASH correlated with mean pathologist scores and with noninvasive biomarkers and strongly predicted patient outcomes. In a retrospective analysis of the ATLAS trial, previously unmet pathological endpoints were met when scored by the AIM-NASH algorithm alone. Overall, these results suggest that AIM-NASH may assist pathologists in histologic review of NASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient therapeutic response. Cold Spring Harbor Laboratory 2023-04-25 /pmc/articles/PMC10168404/ /pubmed/37162870 http://dx.doi.org/10.1101/2023.04.20.23288534 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Iyer, Janani S.
Pokkalla, Harsha
Biddle-Snead, Charles
Carrasco-Zevallos, Oscar
Lin, Mary
Shanis, Zahil
Le, Quang
Juyal, Dinkar
Pouryahya, Maryam
Pedawi, Aryan
Hoffman, Sara
Elliott, Hunter
Leidal, Kenneth
Myers, Robert P.
Chung, Chuhan
Billin, Andrew N.
Watkins, Timothy R.
Resnick, Murray
Wack, Katy
Glickman, Jon
Burt, Alastair D.
Loomba, Rohit
Sanyal, Arun J.
Montalto, Michael C.
Beck, Andrew H.
Taylor-Weiner, Amaro
Wapinski, Ilan
AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials
title AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials
title_full AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials
title_fullStr AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials
title_full_unstemmed AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials
title_short AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials
title_sort ai-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in nash clinical trials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168404/
https://www.ncbi.nlm.nih.gov/pubmed/37162870
http://dx.doi.org/10.1101/2023.04.20.23288534
work_keys_str_mv AT iyerjananis aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT pokkallaharsha aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT biddlesneadcharles aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT carrascozevallososcar aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT linmary aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT shaniszahil aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT lequang aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT juyaldinkar aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT pouryahyamaryam aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT pedawiaryan aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT hoffmansara aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT elliotthunter aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT leidalkenneth aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT myersrobertp aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT chungchuhan aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT billinandrewn aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT watkinstimothyr aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT resnickmurray aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT wackkaty aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT glickmanjon aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT burtalastaird aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT loombarohit aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT sanyalarunj aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT montaltomichaelc aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT beckandrewh aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT taylorweineramaro aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials
AT wapinskiilan aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials