Cargando…
AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials
Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion criteria and endpoints. However, guidelines for scoring key features have led to variability in interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168404/ https://www.ncbi.nlm.nih.gov/pubmed/37162870 http://dx.doi.org/10.1101/2023.04.20.23288534 |
_version_ | 1785038848378535936 |
---|---|
author | Iyer, Janani S. Pokkalla, Harsha Biddle-Snead, Charles Carrasco-Zevallos, Oscar Lin, Mary Shanis, Zahil Le, Quang Juyal, Dinkar Pouryahya, Maryam Pedawi, Aryan Hoffman, Sara Elliott, Hunter Leidal, Kenneth Myers, Robert P. Chung, Chuhan Billin, Andrew N. Watkins, Timothy R. Resnick, Murray Wack, Katy Glickman, Jon Burt, Alastair D. Loomba, Rohit Sanyal, Arun J. Montalto, Michael C. Beck, Andrew H. Taylor-Weiner, Amaro Wapinski, Ilan |
author_facet | Iyer, Janani S. Pokkalla, Harsha Biddle-Snead, Charles Carrasco-Zevallos, Oscar Lin, Mary Shanis, Zahil Le, Quang Juyal, Dinkar Pouryahya, Maryam Pedawi, Aryan Hoffman, Sara Elliott, Hunter Leidal, Kenneth Myers, Robert P. Chung, Chuhan Billin, Andrew N. Watkins, Timothy R. Resnick, Murray Wack, Katy Glickman, Jon Burt, Alastair D. Loomba, Rohit Sanyal, Arun J. Montalto, Michael C. Beck, Andrew H. Taylor-Weiner, Amaro Wapinski, Ilan |
author_sort | Iyer, Janani S. |
collection | PubMed |
description | Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion criteria and endpoints. However, guidelines for scoring key features have led to variability in interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI)-based measurement (AIM) tool for scoring NASH histology (AIM-NASH). AIM-NASH predictions for NASH Clinical Research Network (CRN) grades of necroinflammation and stages of fibrosis aligned with expert consensus scores and were reproducible. Continuous scores produced by AIM-NASH for key histological features of NASH correlated with mean pathologist scores and with noninvasive biomarkers and strongly predicted patient outcomes. In a retrospective analysis of the ATLAS trial, previously unmet pathological endpoints were met when scored by the AIM-NASH algorithm alone. Overall, these results suggest that AIM-NASH may assist pathologists in histologic review of NASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient therapeutic response. |
format | Online Article Text |
id | pubmed-10168404 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-101684042023-05-10 AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials Iyer, Janani S. Pokkalla, Harsha Biddle-Snead, Charles Carrasco-Zevallos, Oscar Lin, Mary Shanis, Zahil Le, Quang Juyal, Dinkar Pouryahya, Maryam Pedawi, Aryan Hoffman, Sara Elliott, Hunter Leidal, Kenneth Myers, Robert P. Chung, Chuhan Billin, Andrew N. Watkins, Timothy R. Resnick, Murray Wack, Katy Glickman, Jon Burt, Alastair D. Loomba, Rohit Sanyal, Arun J. Montalto, Michael C. Beck, Andrew H. Taylor-Weiner, Amaro Wapinski, Ilan medRxiv Article Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion criteria and endpoints. However, guidelines for scoring key features have led to variability in interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI)-based measurement (AIM) tool for scoring NASH histology (AIM-NASH). AIM-NASH predictions for NASH Clinical Research Network (CRN) grades of necroinflammation and stages of fibrosis aligned with expert consensus scores and were reproducible. Continuous scores produced by AIM-NASH for key histological features of NASH correlated with mean pathologist scores and with noninvasive biomarkers and strongly predicted patient outcomes. In a retrospective analysis of the ATLAS trial, previously unmet pathological endpoints were met when scored by the AIM-NASH algorithm alone. Overall, these results suggest that AIM-NASH may assist pathologists in histologic review of NASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient therapeutic response. Cold Spring Harbor Laboratory 2023-04-25 /pmc/articles/PMC10168404/ /pubmed/37162870 http://dx.doi.org/10.1101/2023.04.20.23288534 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Iyer, Janani S. Pokkalla, Harsha Biddle-Snead, Charles Carrasco-Zevallos, Oscar Lin, Mary Shanis, Zahil Le, Quang Juyal, Dinkar Pouryahya, Maryam Pedawi, Aryan Hoffman, Sara Elliott, Hunter Leidal, Kenneth Myers, Robert P. Chung, Chuhan Billin, Andrew N. Watkins, Timothy R. Resnick, Murray Wack, Katy Glickman, Jon Burt, Alastair D. Loomba, Rohit Sanyal, Arun J. Montalto, Michael C. Beck, Andrew H. Taylor-Weiner, Amaro Wapinski, Ilan AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials |
title | AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials |
title_full | AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials |
title_fullStr | AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials |
title_full_unstemmed | AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials |
title_short | AI-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in NASH clinical trials |
title_sort | ai-based histologic scoring enables automated and reproducible assessment of enrollment criteria and endpoints in nash clinical trials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168404/ https://www.ncbi.nlm.nih.gov/pubmed/37162870 http://dx.doi.org/10.1101/2023.04.20.23288534 |
work_keys_str_mv | AT iyerjananis aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT pokkallaharsha aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT biddlesneadcharles aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT carrascozevallososcar aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT linmary aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT shaniszahil aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT lequang aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT juyaldinkar aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT pouryahyamaryam aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT pedawiaryan aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT hoffmansara aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT elliotthunter aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT leidalkenneth aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT myersrobertp aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT chungchuhan aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT billinandrewn aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT watkinstimothyr aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT resnickmurray aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT wackkaty aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT glickmanjon aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT burtalastaird aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT loombarohit aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT sanyalarunj aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT montaltomichaelc aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT beckandrewh aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT taylorweineramaro aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials AT wapinskiilan aibasedhistologicscoringenablesautomatedandreproducibleassessmentofenrollmentcriteriaandendpointsinnashclinicaltrials |