Cargando…

Data-Driven Volumetric Image Generation from Surface Structures using a Patient-Specific Deep Leaning Model

The advent of computed tomography significantly improves patients’ health regarding diagnosis, prognosis, and treatment planning and verification. However, tomographic imaging escalates concomitant radiation doses to patients, inducing potential secondary cancer by 4%. We demonstrate the feasibility...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Shaoyan, Chang, Chih-Wei, Axente, Marian, Wang, Tonghe, Shelton, Joseph, Liu, Tian, Roper, Justin, Yang, Xiaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168423/
https://www.ncbi.nlm.nih.gov/pubmed/37163137
Descripción
Sumario:The advent of computed tomography significantly improves patients’ health regarding diagnosis, prognosis, and treatment planning and verification. However, tomographic imaging escalates concomitant radiation doses to patients, inducing potential secondary cancer by 4%. We demonstrate the feasibility of a data-driven approach to synthesize volumetric images using patients’ surface images, which can be obtained from a zero-dose surface imaging system. This study includes 500 computed tomography (CT) image sets from 50 patients. Compared to the ground truth CT, the synthetic images result in the evaluation metric values of 26.9 ± 4.1 Hounsfield units, 39.1 ± 1.0 dB, and 0.965 ± 0.011 regarding the mean absolute error, peak signal-to-noise ratio, and structural similarity index measure. This approach provides a data integration solution that can potentially enable real-time imaging, which is free of radiation-induced risk and could be applied to image-guided medical procedures.