Cargando…
Data-Driven Volumetric Image Generation from Surface Structures using a Patient-Specific Deep Leaning Model
The advent of computed tomography significantly improves patients’ health regarding diagnosis, prognosis, and treatment planning and verification. However, tomographic imaging escalates concomitant radiation doses to patients, inducing potential secondary cancer by 4%. We demonstrate the feasibility...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168423/ https://www.ncbi.nlm.nih.gov/pubmed/37163137 |
Sumario: | The advent of computed tomography significantly improves patients’ health regarding diagnosis, prognosis, and treatment planning and verification. However, tomographic imaging escalates concomitant radiation doses to patients, inducing potential secondary cancer by 4%. We demonstrate the feasibility of a data-driven approach to synthesize volumetric images using patients’ surface images, which can be obtained from a zero-dose surface imaging system. This study includes 500 computed tomography (CT) image sets from 50 patients. Compared to the ground truth CT, the synthetic images result in the evaluation metric values of 26.9 ± 4.1 Hounsfield units, 39.1 ± 1.0 dB, and 0.965 ± 0.011 regarding the mean absolute error, peak signal-to-noise ratio, and structural similarity index measure. This approach provides a data integration solution that can potentially enable real-time imaging, which is free of radiation-induced risk and could be applied to image-guided medical procedures. |
---|