Cargando…
Training certified detectives to track down the intrinsic shortcuts in COVID-19 chest x-ray data sets
Deep learning faces a significant challenge wherein the trained models often underperform when used with external test data sets. This issue has been attributed to spurious correlations between irrelevant features in the input data and corresponding labels. This study uses the classification of COVI...
Autores principales: | Zhang, Ran, Griner, Dalton, Garrett, John W., Qi, Zhihua, Chen, Guang-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168454/ https://www.ncbi.nlm.nih.gov/pubmed/37162826 http://dx.doi.org/10.21203/rs.3.rs-2818347/v1 |
Ejemplares similares
-
Training certified detectives to track down the intrinsic shortcuts in COVID-19 chest x-ray data sets
por: Zhang, Ran, et al.
Publicado: (2023) -
Deep learning models for COVID-19 chest x-ray classification: Preventing shortcut learning using feature disentanglement
por: Robinson, Caleb, et al.
Publicado: (2021) -
Deep learning models for COVID-19 chest x-ray classification: Preventing shortcut learning using feature disentanglement
por: Trivedi, Anusua, et al.
Publicado: (2022) -
Current limitations to identify covid-19 using artificial intelligence with chest x-ray imaging (part ii). The shortcut learning problem
por: López-Cabrera, José Daniel, et al.
Publicado: (2021) -
Diagnosis of Coronavirus Disease 2019 Pneumonia by Using Chest Radiography: Value of Artificial Intelligence
por: Zhang, Ran, et al.
Publicado: (2021)