Cargando…

Machine learning classification of chronic traumatic brain injury using diffusion tensor imaging and NODDI: A replication and extension study

Individuals with acute and chronic traumatic brain injury (TBI) are associated with unique white matter (WM) structural abnormalities, including fractional anisotropy (FA) differences. Our research group previously used FA as a feature in a linear support vector machine (SVM) pattern classifier, obs...

Descripción completa

Detalles Bibliográficos
Autores principales: Maurer, J. Michael, Harenski, Keith A., Paul, Subhadip, Vergara, Victor M., Stephenson, David D., Gullapalli, Aparna R., Anderson, Nathaniel E., Clarke, Gerard J.B., Nyalakanti, Prashanth K., Harenski, Carla L., Decety, Jean, Mayer, Andrew R., Arciniegas, David B., Calhoun, Vince D., Parrish, Todd B., Kiehl, Kent A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168530/
https://www.ncbi.nlm.nih.gov/pubmed/37169013
http://dx.doi.org/10.1016/j.ynirp.2023.100157
Descripción
Sumario:Individuals with acute and chronic traumatic brain injury (TBI) are associated with unique white matter (WM) structural abnormalities, including fractional anisotropy (FA) differences. Our research group previously used FA as a feature in a linear support vector machine (SVM) pattern classifier, observing high classification between individuals with and without acute TBI (i.e., an area under the curve [AUC] value of 75.50%). However, it is not known whether FA could similarly classify between individuals with and without history of chronic TBI. Here, we attempted to replicate our previous work with a new sample, investigating whether FA could similarly classify between incarcerated men with (n = 80) and without (n = 80) self-reported history of chronic TBI. Additionally, given limitations associated with FA, including underestimation of FA values in WM tracts containing crossing fibers, we extended upon our previous study by incorporating neurite orientation dispersion and density imaging (NODDI) metrics, including orientation dispersion (ODI) and isotropic volume (Viso). A linear SVM based classification approach, similar to our previous study, was incorporated here to classify between individuals with and without self-reported chronic TBI using FA and NODDI metrics as separate features. Overall classification rates were similar when incorporating FA and NODDI ODI metrics as features (AUC: 82.50%). Additionally, NODDI-based metrics provided the highest sensitivity (ODI: 85.00%) and specificity (Viso: 82.50%) rates. The current study serves as a replication and extension of our previous study, observing that multiple diffusion MRI metrics can reliably classify between individuals with and without self-reported history of chronic TBI.