Cargando…
A metadata framework for computational phenotypes
With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty act...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168627/ https://www.ncbi.nlm.nih.gov/pubmed/37181728 http://dx.doi.org/10.1093/jamiaopen/ooad032 |
_version_ | 1785038889045458944 |
---|---|
author | Spotnitz, Matthew Acharya, Nripendra Cimino, James J Murphy, Shawn Namjou, Bahram Crimmins, Nancy Walunas, Theresa Liu, Cong Crosslin, David Benoit, Barbara Rosenthal, Elisabeth Pacheco, Jennifer A Ostropolets, Anna Reyes Nieva, Harry Patterson, Jason S Richter, Lauren R Callahan, Tiffany J Elhussein, Ahmed Pang, Chao Kiryluk, Krzysztof Nestor, Jordan Khan, Atlas Mohan, Sumit Minty, Evan Chung, Wendy Wei, Wei-Qi Natarajan, Karthik Weng, Chunhua |
author_facet | Spotnitz, Matthew Acharya, Nripendra Cimino, James J Murphy, Shawn Namjou, Bahram Crimmins, Nancy Walunas, Theresa Liu, Cong Crosslin, David Benoit, Barbara Rosenthal, Elisabeth Pacheco, Jennifer A Ostropolets, Anna Reyes Nieva, Harry Patterson, Jason S Richter, Lauren R Callahan, Tiffany J Elhussein, Ahmed Pang, Chao Kiryluk, Krzysztof Nestor, Jordan Khan, Atlas Mohan, Sumit Minty, Evan Chung, Wendy Wei, Wei-Qi Natarajan, Karthik Weng, Chunhua |
author_sort | Spotnitz, Matthew |
collection | PubMed |
description | With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs. |
format | Online Article Text |
id | pubmed-10168627 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101686272023-05-10 A metadata framework for computational phenotypes Spotnitz, Matthew Acharya, Nripendra Cimino, James J Murphy, Shawn Namjou, Bahram Crimmins, Nancy Walunas, Theresa Liu, Cong Crosslin, David Benoit, Barbara Rosenthal, Elisabeth Pacheco, Jennifer A Ostropolets, Anna Reyes Nieva, Harry Patterson, Jason S Richter, Lauren R Callahan, Tiffany J Elhussein, Ahmed Pang, Chao Kiryluk, Krzysztof Nestor, Jordan Khan, Atlas Mohan, Sumit Minty, Evan Chung, Wendy Wei, Wei-Qi Natarajan, Karthik Weng, Chunhua JAMIA Open Brief Communications With the burgeoning development of computational phenotypes, it is increasingly difficult to identify the right phenotype for the right tasks. This study uses a mixed-methods approach to develop and evaluate a novel metadata framework for retrieval of and reusing computational phenotypes. Twenty active phenotyping researchers from 2 large research networks, Electronic Medical Records and Genomics and Observational Health Data Sciences and Informatics, were recruited to suggest metadata elements. Once consensus was reached on 39 metadata elements, 47 new researchers were surveyed to evaluate the utility of the metadata framework. The survey consisted of 5-Likert multiple-choice questions and open-ended questions. Two more researchers were asked to use the metadata framework to annotate 8 type-2 diabetes mellitus phenotypes. More than 90% of the survey respondents rated metadata elements regarding phenotype definition and validation methods and metrics positively with a score of 4 or 5. Both researchers completed annotation of each phenotype within 60 min. Our thematic analysis of the narrative feedback indicates that the metadata framework was effective in capturing rich and explicit descriptions and enabling the search for phenotypes, compliance with data standards, and comprehensive validation metrics. Current limitations were its complexity for data collection and the entailed human costs. Oxford University Press 2023-05-09 /pmc/articles/PMC10168627/ /pubmed/37181728 http://dx.doi.org/10.1093/jamiaopen/ooad032 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Brief Communications Spotnitz, Matthew Acharya, Nripendra Cimino, James J Murphy, Shawn Namjou, Bahram Crimmins, Nancy Walunas, Theresa Liu, Cong Crosslin, David Benoit, Barbara Rosenthal, Elisabeth Pacheco, Jennifer A Ostropolets, Anna Reyes Nieva, Harry Patterson, Jason S Richter, Lauren R Callahan, Tiffany J Elhussein, Ahmed Pang, Chao Kiryluk, Krzysztof Nestor, Jordan Khan, Atlas Mohan, Sumit Minty, Evan Chung, Wendy Wei, Wei-Qi Natarajan, Karthik Weng, Chunhua A metadata framework for computational phenotypes |
title | A metadata framework for computational phenotypes |
title_full | A metadata framework for computational phenotypes |
title_fullStr | A metadata framework for computational phenotypes |
title_full_unstemmed | A metadata framework for computational phenotypes |
title_short | A metadata framework for computational phenotypes |
title_sort | metadata framework for computational phenotypes |
topic | Brief Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168627/ https://www.ncbi.nlm.nih.gov/pubmed/37181728 http://dx.doi.org/10.1093/jamiaopen/ooad032 |
work_keys_str_mv | AT spotnitzmatthew ametadataframeworkforcomputationalphenotypes AT acharyanripendra ametadataframeworkforcomputationalphenotypes AT ciminojamesj ametadataframeworkforcomputationalphenotypes AT murphyshawn ametadataframeworkforcomputationalphenotypes AT namjoubahram ametadataframeworkforcomputationalphenotypes AT crimminsnancy ametadataframeworkforcomputationalphenotypes AT walunastheresa ametadataframeworkforcomputationalphenotypes AT liucong ametadataframeworkforcomputationalphenotypes AT crosslindavid ametadataframeworkforcomputationalphenotypes AT benoitbarbara ametadataframeworkforcomputationalphenotypes AT rosenthalelisabeth ametadataframeworkforcomputationalphenotypes AT pachecojennifera ametadataframeworkforcomputationalphenotypes AT ostropoletsanna ametadataframeworkforcomputationalphenotypes AT reyesnievaharry ametadataframeworkforcomputationalphenotypes AT pattersonjasons ametadataframeworkforcomputationalphenotypes AT richterlaurenr ametadataframeworkforcomputationalphenotypes AT callahantiffanyj ametadataframeworkforcomputationalphenotypes AT elhusseinahmed ametadataframeworkforcomputationalphenotypes AT pangchao ametadataframeworkforcomputationalphenotypes AT kirylukkrzysztof ametadataframeworkforcomputationalphenotypes AT nestorjordan ametadataframeworkforcomputationalphenotypes AT khanatlas ametadataframeworkforcomputationalphenotypes AT mohansumit ametadataframeworkforcomputationalphenotypes AT mintyevan ametadataframeworkforcomputationalphenotypes AT chungwendy ametadataframeworkforcomputationalphenotypes AT weiweiqi ametadataframeworkforcomputationalphenotypes AT natarajankarthik ametadataframeworkforcomputationalphenotypes AT wengchunhua ametadataframeworkforcomputationalphenotypes AT spotnitzmatthew metadataframeworkforcomputationalphenotypes AT acharyanripendra metadataframeworkforcomputationalphenotypes AT ciminojamesj metadataframeworkforcomputationalphenotypes AT murphyshawn metadataframeworkforcomputationalphenotypes AT namjoubahram metadataframeworkforcomputationalphenotypes AT crimminsnancy metadataframeworkforcomputationalphenotypes AT walunastheresa metadataframeworkforcomputationalphenotypes AT liucong metadataframeworkforcomputationalphenotypes AT crosslindavid metadataframeworkforcomputationalphenotypes AT benoitbarbara metadataframeworkforcomputationalphenotypes AT rosenthalelisabeth metadataframeworkforcomputationalphenotypes AT pachecojennifera metadataframeworkforcomputationalphenotypes AT ostropoletsanna metadataframeworkforcomputationalphenotypes AT reyesnievaharry metadataframeworkforcomputationalphenotypes AT pattersonjasons metadataframeworkforcomputationalphenotypes AT richterlaurenr metadataframeworkforcomputationalphenotypes AT callahantiffanyj metadataframeworkforcomputationalphenotypes AT elhusseinahmed metadataframeworkforcomputationalphenotypes AT pangchao metadataframeworkforcomputationalphenotypes AT kirylukkrzysztof metadataframeworkforcomputationalphenotypes AT nestorjordan metadataframeworkforcomputationalphenotypes AT khanatlas metadataframeworkforcomputationalphenotypes AT mohansumit metadataframeworkforcomputationalphenotypes AT mintyevan metadataframeworkforcomputationalphenotypes AT chungwendy metadataframeworkforcomputationalphenotypes AT weiweiqi metadataframeworkforcomputationalphenotypes AT natarajankarthik metadataframeworkforcomputationalphenotypes AT wengchunhua metadataframeworkforcomputationalphenotypes |