Cargando…

1-3-7 surveillance and response approach in malaria elimination: China’s practice and global adaptions

There has been a significant reduction in malaria morbidity and mortality worldwide from 2000 to 2019. However, the incidence and mortality increased again in 2020 due to the disruption to services during the COVID-19 pandemic. Surveillance to reduce the burden of malaria, eliminate the disease and...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Boyu, Zhang, Li, Yin, Jianhai, Zhou, Shuisen, Xia, Zhigui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169118/
https://www.ncbi.nlm.nih.gov/pubmed/37161379
http://dx.doi.org/10.1186/s12936-023-04580-9
Descripción
Sumario:There has been a significant reduction in malaria morbidity and mortality worldwide from 2000 to 2019. However, the incidence and mortality increased again in 2020 due to the disruption to services during the COVID-19 pandemic. Surveillance to reduce the burden of malaria, eliminate the disease and prevent its retransmission is, therefore, crucial. The 1-3-7 approach proposed by China has played an important role in eliminating malaria, which has been internationally popularized and adopted in some countries to help eliminate malaria. This review summarizes the experience and lessons of 1-3-7 approach in China and its application in other malaria-endemic countries, so as to provide references for its role in eliminating malaria and preventing retransmission. This approach needs to be tailored and adapted according to the region condition, considering the completion, timeliness and limitation of case-based reactive surveillance and response. It is very important to popularize malaria knowledge, train staff, improve the capacity of health centres and monitor high-risk groups to improve the performance in eliminating settings. After all, remaining vigilance in detecting malaria cases and optimizing surveillance and response systems are critical to achieving and sustaining malaria elimination.