Cargando…
Classification of chest X-ray images by incorporation of medical domain knowledge into operation branch networks
BACKGROUND: This study was conducted to alleviate a common difficulty in chest X-ray image diagnosis: The attention region in a convolutional neural network (CNN) does not often match the doctor’s point of focus. The method presented herein, which guides the area of attention in CNN to a medically p...
Autores principales: | Tsuji, Takumasa, Hirata, Yukina, Kusunose, Kenya, Sata, Masataka, Kumagai, Shinobu, Shiraishi, Kenshiro, Kotoku, Jun’ichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169130/ https://www.ncbi.nlm.nih.gov/pubmed/37161392 http://dx.doi.org/10.1186/s12880-023-01019-0 |
Ejemplares similares
-
Deep learning to predict elevated pulmonary artery pressure in patients with suspected pulmonary hypertension using standard chest X ray
por: Kusunose, Kenya, et al.
Publicado: (2020) -
Deep Learning for Detection of Exercise-Induced Pulmonary Hypertension Using Chest X-Ray Images
por: Kusunose, Kenya, et al.
Publicado: (2022) -
Deep learning approach for analyzing chest x-rays to predict cardiac events in heart failure
por: Kusunose, Kenya, et al.
Publicado: (2023) -
Classification of optical coherence tomography images using a capsule network
por: Tsuji, Takumasa, et al.
Publicado: (2020) -
Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach
por: Oyama, Asuka, et al.
Publicado: (2019)