Cargando…
High-throughput deep learning variant effect prediction with Sequence UNET
Understanding coding mutations is important for many applications in biology and medicine but the vast mutation space makes comprehensive experimental characterisation impossible. Current predictors are often computationally intensive and difficult to scale, including recent deep learning models. We...
Autores principales: | Dunham, Alistair S., Beltrao, Pedro, AlQuraishi, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169183/ https://www.ncbi.nlm.nih.gov/pubmed/37161576 http://dx.doi.org/10.1186/s13059-023-02948-3 |
Ejemplares similares
-
ProteinNet: a standardized data set for machine learning of protein structure
por: AlQuraishi, Mohammed
Publicado: (2019) -
Exploring amino acid functions in a deep mutational landscape
por: Dunham, Alistair S, et al.
Publicado: (2021) -
DeepMILO: a deep learning approach to predict the impact of non-coding sequence variants on 3D chromatin structure
por: Trieu, Tuan, et al.
Publicado: (2020) -
Mapinsights: deep exploration of quality issues and error profiles in high-throughput sequence data
por: Das, Subrata, et al.
Publicado: (2023) -
Polishing copy number variant calls on exome sequencing data via deep learning
por: Özden, Furkan, et al.
Publicado: (2022)