Cargando…
Nicotine receptor partial agonists for smoking cessation
BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). This is an update of a Cochrane Review firs...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169257/ https://www.ncbi.nlm.nih.gov/pubmed/37142273 http://dx.doi.org/10.1002/14651858.CD006103.pub8 |
_version_ | 1785039017528524800 |
---|---|
author | Livingstone-Banks, Jonathan Fanshawe, Thomas R Thomas, Kyla H Theodoulou, Annika Hajizadeh, Anisa Hartman, Lilian Lindson, Nicola |
author_facet | Livingstone-Banks, Jonathan Fanshawe, Thomas R Thomas, Kyla H Theodoulou, Annika Hajizadeh, Anisa Hartman, Lilian Lindson, Nicola |
author_sort | Livingstone-Banks, Jonathan |
collection | PubMed |
description | BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). This is an update of a Cochrane Review first published in 2007. OBJECTIVES: To assess the effectiveness of nicotine receptor partial agonists, including varenicline and cytisine, for smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialised Register in April 2022 for trials, using relevant terms in the title or abstract, or as keywords. The register is compiled from searches of CENTRAL, MEDLINE, Embase, and PsycINFO. SELECTION CRITERIA: We included randomised controlled trials that compared the treatment drug with placebo, another smoking cessation drug, e‐cigarettes, or no medication. We excluded trials that did not report a minimum follow‐up period of six months from baseline. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. Our main outcome was abstinence from smoking at longest follow‐up using the most rigorous definition of abstinence, preferring biochemically validated rates where reported. We pooled risk ratios (RRs), using the Mantel‐Haenszel fixed‐effect model. We also reported the number of people reporting serious adverse events (SAEs). MAIN RESULTS: We included 75 trials of 45,049 people; 45 were new for this update. We rated 22 at low risk of bias, 18 at high risk, and 35 at unclear risk. We found moderate‐certainty evidence (limited by heterogeneity) that cytisine helps more people to quit smoking than placebo (RR 1.30, 95% confidence interval (CI) 1.15 to 1.47; I(2) = 83%; 4 studies, 4623 participants), and no evidence of a difference in the number reporting SAEs (RR 1.04, 95% CI 0.78 to 1.37; I(2) = 0%; 3 studies, 3781 participants; low‐certainty evidence). SAE evidence was limited by imprecision. We found no data on neuropsychiatric or cardiac SAEs. We found high‐certainty evidence that varenicline helps more people to quit than placebo (RR 2.32, 95% CI 2.15 to 2.51; I(2) = 60%, 41 studies, 17,395 participants), and moderate‐certainty evidence that people taking varenicline are more likely to report SAEs than those not taking it (RR 1.23, 95% CI 1.01 to 1.48; I(2) = 0%; 26 studies, 14,356 participants). While point estimates suggested increased risk of cardiac SAEs (RR 1.20, 95% CI 0.79 to 1.84; I(2) = 0%; 18 studies, 7151 participants; low‐certainty evidence), and decreased risk of neuropsychiatric SAEs (RR 0.89, 95% CI 0.61 to 1.29; I(2) = 0%; 22 studies, 7846 participants; low‐certainty evidence), in both cases evidence was limited by imprecision, and confidence intervals were compatible with both benefit and harm. Pooled results from studies that randomised people to receive cytisine or varenicline showed that more people in the varenicline arm quit smoking (RR 0.83, 95% CI 0.66 to 1.05; I(2) = 0%; 2 studies, 2131 participants; moderate‐certainty evidence) and reported SAEs (RR 0.67, 95% CI 0.44 to 1.03; I(2) = 45%; 2 studies, 2017 participants; low‐certainty evidence). However, the evidence was limited by imprecision, and confidence intervals incorporated the potential for benefit from either cytisine or varenicline. We found no data on neuropsychiatric or cardiac SAEs. We found high‐certainty evidence that varenicline helps more people to quit than bupropion (RR 1.36, 95% CI 1.25 to 1.49; I(2) = 0%; 9 studies, 7560 participants), and no clear evidence of difference in rates of SAEs (RR 0.89, 95% CI 0.61 to 1.31; I(2) = 0%; 5 studies, 5317 participants), neuropsychiatric SAEs (RR 1.05, 95% CI 0.16 to 7.04; I(2) = 10%; 2 studies, 866 participants), or cardiac SAEs (RR 3.17, 95% CI 0.33 to 30.18; I(2) = 0%; 2 studies, 866 participants). Evidence of harms was of low certainty, limited by imprecision. We found high‐certainty evidence that varenicline helps more people to quit than a single form of nicotine replacement therapy (NRT) (RR 1.25, 95% CI 1.14 to 1.37; I(2) = 28%; 11 studies, 7572 participants), and low‐certainty evidence, limited by imprecision, of fewer reported SAEs (RR 0.70, 95% CI 0.50 to 0.99; I(2) = 24%; 6 studies, 6535 participants). We found no data on neuropsychiatric or cardiac SAEs. We found no clear evidence of a difference in quit rates between varenicline and dual‐form NRT (RR 1.02, 95% CI 0.87 to 1.20; I(2) = 0%; 5 studies, 2344 participants; low‐certainty evidence, downgraded because of imprecision). While pooled point estimates suggested increased risk of SAEs (RR 2.15, 95% CI 0.49 to 9.46; I(2) = 0%; 4 studies, 1852 participants) and neuropsychiatric SAEs (RR 4.69, 95% CI 0.23 to 96.50; I(2) not estimable as events only in 1 study; 2 studies, 764 participants), and reduced risk of cardiac SAEs (RR 0.32, 95% CI 0.01 to 7.88; I(2) not estimable as events only in 1 study; 2 studies, 819 participants), in all three cases evidence was of low certainty and confidence intervals were very wide, encompassing both substantial harm and benefit. AUTHORS' CONCLUSIONS: Cytisine and varenicline both help more people to quit smoking than placebo or no medication. Varenicline is more effective at helping people to quit smoking than bupropion, or a single form of NRT, and may be as or more effective than dual‐form NRT. People taking varenicline are probably more likely to experience SAEs than those not taking it, and while there may be increased risk of cardiac SAEs and decreased risk of neuropsychiatric SAEs, evidence was compatible with both benefit and harm. Cytisine may lead to fewer people reporting SAEs than varenicline. Based on studies that directly compared cytisine and varenicline, there may be a benefit from varenicline for quitting smoking, however further evidence could strengthen this finding or demonstrate a benefit from cytisine. Future trials should test the effectiveness and safety of cytisine compared with varenicline and other pharmacotherapies, and should also test variations in dose and duration. There is limited benefit to be gained from more trials testing the effect of standard‐dose varenicline compared with placebo for smoking cessation. Further trials on varenicline should test variations in dose and duration, and compare varenicline with e‐cigarettes for smoking cessation. |
format | Online Article Text |
id | pubmed-10169257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley & Sons, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-101692572023-05-10 Nicotine receptor partial agonists for smoking cessation Livingstone-Banks, Jonathan Fanshawe, Thomas R Thomas, Kyla H Theodoulou, Annika Hajizadeh, Anisa Hartman, Lilian Lindson, Nicola Cochrane Database Syst Rev BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). This is an update of a Cochrane Review first published in 2007. OBJECTIVES: To assess the effectiveness of nicotine receptor partial agonists, including varenicline and cytisine, for smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialised Register in April 2022 for trials, using relevant terms in the title or abstract, or as keywords. The register is compiled from searches of CENTRAL, MEDLINE, Embase, and PsycINFO. SELECTION CRITERIA: We included randomised controlled trials that compared the treatment drug with placebo, another smoking cessation drug, e‐cigarettes, or no medication. We excluded trials that did not report a minimum follow‐up period of six months from baseline. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. Our main outcome was abstinence from smoking at longest follow‐up using the most rigorous definition of abstinence, preferring biochemically validated rates where reported. We pooled risk ratios (RRs), using the Mantel‐Haenszel fixed‐effect model. We also reported the number of people reporting serious adverse events (SAEs). MAIN RESULTS: We included 75 trials of 45,049 people; 45 were new for this update. We rated 22 at low risk of bias, 18 at high risk, and 35 at unclear risk. We found moderate‐certainty evidence (limited by heterogeneity) that cytisine helps more people to quit smoking than placebo (RR 1.30, 95% confidence interval (CI) 1.15 to 1.47; I(2) = 83%; 4 studies, 4623 participants), and no evidence of a difference in the number reporting SAEs (RR 1.04, 95% CI 0.78 to 1.37; I(2) = 0%; 3 studies, 3781 participants; low‐certainty evidence). SAE evidence was limited by imprecision. We found no data on neuropsychiatric or cardiac SAEs. We found high‐certainty evidence that varenicline helps more people to quit than placebo (RR 2.32, 95% CI 2.15 to 2.51; I(2) = 60%, 41 studies, 17,395 participants), and moderate‐certainty evidence that people taking varenicline are more likely to report SAEs than those not taking it (RR 1.23, 95% CI 1.01 to 1.48; I(2) = 0%; 26 studies, 14,356 participants). While point estimates suggested increased risk of cardiac SAEs (RR 1.20, 95% CI 0.79 to 1.84; I(2) = 0%; 18 studies, 7151 participants; low‐certainty evidence), and decreased risk of neuropsychiatric SAEs (RR 0.89, 95% CI 0.61 to 1.29; I(2) = 0%; 22 studies, 7846 participants; low‐certainty evidence), in both cases evidence was limited by imprecision, and confidence intervals were compatible with both benefit and harm. Pooled results from studies that randomised people to receive cytisine or varenicline showed that more people in the varenicline arm quit smoking (RR 0.83, 95% CI 0.66 to 1.05; I(2) = 0%; 2 studies, 2131 participants; moderate‐certainty evidence) and reported SAEs (RR 0.67, 95% CI 0.44 to 1.03; I(2) = 45%; 2 studies, 2017 participants; low‐certainty evidence). However, the evidence was limited by imprecision, and confidence intervals incorporated the potential for benefit from either cytisine or varenicline. We found no data on neuropsychiatric or cardiac SAEs. We found high‐certainty evidence that varenicline helps more people to quit than bupropion (RR 1.36, 95% CI 1.25 to 1.49; I(2) = 0%; 9 studies, 7560 participants), and no clear evidence of difference in rates of SAEs (RR 0.89, 95% CI 0.61 to 1.31; I(2) = 0%; 5 studies, 5317 participants), neuropsychiatric SAEs (RR 1.05, 95% CI 0.16 to 7.04; I(2) = 10%; 2 studies, 866 participants), or cardiac SAEs (RR 3.17, 95% CI 0.33 to 30.18; I(2) = 0%; 2 studies, 866 participants). Evidence of harms was of low certainty, limited by imprecision. We found high‐certainty evidence that varenicline helps more people to quit than a single form of nicotine replacement therapy (NRT) (RR 1.25, 95% CI 1.14 to 1.37; I(2) = 28%; 11 studies, 7572 participants), and low‐certainty evidence, limited by imprecision, of fewer reported SAEs (RR 0.70, 95% CI 0.50 to 0.99; I(2) = 24%; 6 studies, 6535 participants). We found no data on neuropsychiatric or cardiac SAEs. We found no clear evidence of a difference in quit rates between varenicline and dual‐form NRT (RR 1.02, 95% CI 0.87 to 1.20; I(2) = 0%; 5 studies, 2344 participants; low‐certainty evidence, downgraded because of imprecision). While pooled point estimates suggested increased risk of SAEs (RR 2.15, 95% CI 0.49 to 9.46; I(2) = 0%; 4 studies, 1852 participants) and neuropsychiatric SAEs (RR 4.69, 95% CI 0.23 to 96.50; I(2) not estimable as events only in 1 study; 2 studies, 764 participants), and reduced risk of cardiac SAEs (RR 0.32, 95% CI 0.01 to 7.88; I(2) not estimable as events only in 1 study; 2 studies, 819 participants), in all three cases evidence was of low certainty and confidence intervals were very wide, encompassing both substantial harm and benefit. AUTHORS' CONCLUSIONS: Cytisine and varenicline both help more people to quit smoking than placebo or no medication. Varenicline is more effective at helping people to quit smoking than bupropion, or a single form of NRT, and may be as or more effective than dual‐form NRT. People taking varenicline are probably more likely to experience SAEs than those not taking it, and while there may be increased risk of cardiac SAEs and decreased risk of neuropsychiatric SAEs, evidence was compatible with both benefit and harm. Cytisine may lead to fewer people reporting SAEs than varenicline. Based on studies that directly compared cytisine and varenicline, there may be a benefit from varenicline for quitting smoking, however further evidence could strengthen this finding or demonstrate a benefit from cytisine. Future trials should test the effectiveness and safety of cytisine compared with varenicline and other pharmacotherapies, and should also test variations in dose and duration. There is limited benefit to be gained from more trials testing the effect of standard‐dose varenicline compared with placebo for smoking cessation. Further trials on varenicline should test variations in dose and duration, and compare varenicline with e‐cigarettes for smoking cessation. John Wiley & Sons, Ltd 2023-05-05 /pmc/articles/PMC10169257/ /pubmed/37142273 http://dx.doi.org/10.1002/14651858.CD006103.pub8 Text en Copyright © 2023 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the Creative Commons Attribution Licence (https://creativecommons.org/licenses/by/4.0/) , which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Livingstone-Banks, Jonathan Fanshawe, Thomas R Thomas, Kyla H Theodoulou, Annika Hajizadeh, Anisa Hartman, Lilian Lindson, Nicola Nicotine receptor partial agonists for smoking cessation |
title | Nicotine receptor partial agonists for smoking cessation |
title_full | Nicotine receptor partial agonists for smoking cessation |
title_fullStr | Nicotine receptor partial agonists for smoking cessation |
title_full_unstemmed | Nicotine receptor partial agonists for smoking cessation |
title_short | Nicotine receptor partial agonists for smoking cessation |
title_sort | nicotine receptor partial agonists for smoking cessation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169257/ https://www.ncbi.nlm.nih.gov/pubmed/37142273 http://dx.doi.org/10.1002/14651858.CD006103.pub8 |
work_keys_str_mv | AT livingstonebanksjonathan nicotinereceptorpartialagonistsforsmokingcessation AT fanshawethomasr nicotinereceptorpartialagonistsforsmokingcessation AT thomaskylah nicotinereceptorpartialagonistsforsmokingcessation AT theodoulouannika nicotinereceptorpartialagonistsforsmokingcessation AT hajizadehanisa nicotinereceptorpartialagonistsforsmokingcessation AT hartmanlilian nicotinereceptorpartialagonistsforsmokingcessation AT lindsonnicola nicotinereceptorpartialagonistsforsmokingcessation |