Cargando…

Comprehensive de novo mutation discovery with HiFi long-read sequencing

BACKGROUND: Long-read sequencing (LRS) techniques have been very successful in identifying structural variants (SVs). However, the high error rate of LRS made the detection of small variants (substitutions and short indels < 20 bp) more challenging. The introduction of PacBio HiFi sequencing make...

Descripción completa

Detalles Bibliográficos
Autores principales: Kucuk, Erdi, van der Sanden, Bart P. G. H., O’Gorman, Luke, Kwint, Michael, Derks, Ronny, Wenger, Aaron M., Lambert, Christine, Chakraborty, Shreyasee, Baybayan, Primo, Rowell, William J., Brunner, Han G., Vissers, Lisenka E. L. M., Hoischen, Alexander, Gilissen, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169305/
https://www.ncbi.nlm.nih.gov/pubmed/37158973
http://dx.doi.org/10.1186/s13073-023-01183-6
Descripción
Sumario:BACKGROUND: Long-read sequencing (LRS) techniques have been very successful in identifying structural variants (SVs). However, the high error rate of LRS made the detection of small variants (substitutions and short indels < 20 bp) more challenging. The introduction of PacBio HiFi sequencing makes LRS also suited for detecting small variation. Here we evaluate the ability of HiFi reads to detect de novo mutations (DNMs) of all types, which are technically challenging variant types and a major cause of sporadic, severe, early-onset disease. METHODS: We sequenced the genomes of eight parent–child trios using high coverage PacBio HiFi LRS (~ 30-fold coverage) and Illumina short-read sequencing (SRS) (~ 50-fold coverage). De novo substitutions, small indels, short tandem repeats (STRs) and SVs were called in both datasets and compared to each other to assess the accuracy of HiFi LRS. In addition, we determined the parent-of-origin of the small DNMs using phasing. RESULTS: We identified a total of 672 and 859 de novo substitutions/indels, 28 and 126 de novo STRs, and 24 and 1 de novo SVs in LRS and SRS respectively. For the small variants, there was a 92 and 85% concordance between the platforms. For the STRs and SVs, the concordance was 3.6 and 0.8%, and 4 and 100% respectively. We successfully validated 27/54 LRS-unique small variants, of which 11 (41%) were confirmed as true de novo events. For the SRS-unique small variants, we validated 42/133 DNMs and 8 (19%) were confirmed as true de novo event. Validation of 18 LRS-unique de novo STR calls confirmed none of the repeat expansions as true DNM. Confirmation of the 23 LRS-unique SVs was possible for 19 candidate SVs of which 10 (52.6%) were true de novo events. Furthermore, we were able to assign 96% of DNMs to their parental allele with LRS data, as opposed to just 20% with SRS data. CONCLUSIONS: HiFi LRS can now produce the most comprehensive variant dataset obtainable by a single technology in a single laboratory, allowing accurate calling of substitutions, indels, STRs and SVs. The accuracy even allows sensitive calling of DNMs on all variant levels, and also allows for phasing, which helps to distinguish true positive from false positive DNMs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-023-01183-6.