Cargando…
Correcting gradient-based interpretations of deep neural networks for genomics
Post hoc attribution methods can provide insights into the learned patterns from deep neural networks (DNNs) trained on high-throughput functional genomics data. However, in practice, their resultant attribution maps can be challenging to interpret due to spurious importance scores for seemingly arb...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169356/ https://www.ncbi.nlm.nih.gov/pubmed/37161475 http://dx.doi.org/10.1186/s13059-023-02956-3 |
Sumario: | Post hoc attribution methods can provide insights into the learned patterns from deep neural networks (DNNs) trained on high-throughput functional genomics data. However, in practice, their resultant attribution maps can be challenging to interpret due to spurious importance scores for seemingly arbitrary nucleotides. Here, we identify a previously overlooked attribution noise source that arises from how DNNs handle one-hot encoded DNA. We demonstrate this noise is pervasive across various genomic DNNs and introduce a statistical correction that effectively reduces it, leading to more reliable attribution maps. Our approach represents a promising step towards gaining meaningful insights from DNNs in regulatory genomics. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02956-3. |
---|