Cargando…
Correcting gradient-based interpretations of deep neural networks for genomics
Post hoc attribution methods can provide insights into the learned patterns from deep neural networks (DNNs) trained on high-throughput functional genomics data. However, in practice, their resultant attribution maps can be challenging to interpret due to spurious importance scores for seemingly arb...
Autores principales: | Majdandzic, Antonio, Rajesh, Chandana, Koo, Peter K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169356/ https://www.ncbi.nlm.nih.gov/pubmed/37161475 http://dx.doi.org/10.1186/s13059-023-02956-3 |
Ejemplares similares
-
Global importance analysis: An interpretability method to quantify importance of genomic features in deep neural networks
por: Koo, Peter K., et al.
Publicado: (2021) -
EvoAug: improving generalization and interpretability of genomic deep neural networks with evolution-inspired data augmentations
por: Lee, Nicholas Keone, et al.
Publicado: (2023) -
Interpreting Cis-Regulatory Interactions from Large-Scale Deep Neural Networks for Genomics
por: Toneyan, Shushan, et al.
Publicado: (2023) -
Interpreting Deep Neural Networks and their Predictions
por: Samek, Wojciech
Publicado: (2018) -
Interpreting single-step genomic evaluation as a neural network of three layers: pedigree, genotypes, and phenotypes
por: Zhao, Tianjing, et al.
Publicado: (2023)