Cargando…
Automatic segmentation of vestibular schwannomas from T1-weighted MRI with a deep neural network
BACKGROUND: Long-term follow-up using volumetric measurement could significantly assist in the management of vestibular schwannomas (VS). Manual segmentation of VS from MRI for treatment planning and follow-up assessment is labor-intensive and time-consuming. This study aims to develop a deep learni...
Autores principales: | Wang, Hesheng, Qu, Tanxia, Bernstein, Kenneth, Barbee, David, Kondziolka, Douglas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169364/ https://www.ncbi.nlm.nih.gov/pubmed/37158968 http://dx.doi.org/10.1186/s13014-023-02263-y |
Ejemplares similares
-
Adaptive radiotherapy based on statistical process control for oropharyngeal cancer
por: Wang, Hesheng, et al.
Publicado: (2020) -
Manual segmentation versus semi-automated segmentation for quantifying vestibular schwannoma volume on MRI
por: McGrath, Hari, et al.
Publicado: (2020) -
Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm
por: Shapey, Jonathan, et al.
Publicado: (2021) -
Convolutional Neural Networks to Detect Vestibular Schwannomas on Single MRI Slices: A Feasibility Study
por: Koechli, Carole, et al.
Publicado: (2022) -
Absence of residual tumor tissue after Gamma Knife radiosurgery followed by resection of a vestibular schwannoma: illustrative case
por: Berger, Assaf, et al.
Publicado: (2022)