Cargando…

Artificial intelligence guided HRCT assessment predicts the severity of COVID-19 pneumonia based on clinical parameters

BACKGROUND: The purpose of the study was to compare the results of AI (artificial intelligence) analysis of the extent of pulmonary lesions on HRCT (high resolution computed tomography) images in COVID-19 pneumonia, with clinical data including laboratory markers of inflammation, to verify whether A...

Descripción completa

Detalles Bibliográficos
Autores principales: Chrzan, Robert, Wizner, Barbara, Sydor, Wojciech, Wojciechowska, Wiktoria, Popiela, Tadeusz, Bociąga-Jasik, Monika, Olszanecka, Agnieszka, Strach, Magdalena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170419/
https://www.ncbi.nlm.nih.gov/pubmed/37165346
http://dx.doi.org/10.1186/s12879-023-08303-y
Descripción
Sumario:BACKGROUND: The purpose of the study was to compare the results of AI (artificial intelligence) analysis of the extent of pulmonary lesions on HRCT (high resolution computed tomography) images in COVID-19 pneumonia, with clinical data including laboratory markers of inflammation, to verify whether AI HRCT assessment can predict the clinical severity of COVID-19 pneumonia. METHODS: The analyzed group consisted of 388 patients with COVID-19 pneumonia, with automatically analyzed HRCT parameters of volume: AIV (absolute inflammation), AGV (absolute ground glass), ACV (absolute consolidation), PIV (percentage inflammation), PGV (percentage ground glass), PCV (percentage consolidation). Clinical data included: age, sex, admission parameters: respiratory rate, oxygen saturation, CRP (C-reactive protein), IL6 (interleukin 6), IG - immature granulocytes, WBC (white blood count), neutrophil count, lymphocyte count, serum ferritin, LDH (lactate dehydrogenase), NIH (National Institute of Health) severity score; parameters of clinical course: in-hospital death, transfer to the ICU (intensive care unit), length of hospital stay. RESULTS: The highest correlation coefficients were found for PGV, PIV, with LDH (respectively 0.65, 0.64); PIV, PGV, with oxygen saturation (respectively − 0.53, -0.52); AIV, AGV, with CRP (respectively 0.48, 0.46); AGV, AIV, with ferritin (respectively 0.46, 0.45). Patients with critical pneumonia had significantly lower oxygen saturation, and higher levels of immune-inflammatory biomarkers on admission. The radiological parameters of lung involvement proved to be strong predictors of transfer to the ICU (in particular, PGV ≥ cut-off point 29% with Odds Ratio (OR): 7.53) and in-hospital death (in particular: AIV ≥ cut-off point 831 cm(3) with OR: 4.31). CONCLUSIONS: Automatic analysis of HRCT images by AI may be a valuable method for predicting the severity of COVID-19 pneumonia. The radiological parameters of lung involvement correlate with laboratory markers of inflammation, and are strong predictors of transfer to the ICU and in-hospital death from COVID-19. TRIAL REGISTRATION: National Center for Research and Development CRACoV-HHS project, contract number SZPITALE-JEDNOIMIENNE/18/2020.