Cargando…
Injectable Colloidal Hydrogels of N-Vinylformamide Microgels Dispersed in Covalently Interlinked pH-Responsive Methacrylic Acid-Based Microgels
[Image: see text] Injectable hydrogels offer great potential to augment damaged or degenerated soft tissues. A key criterion for such gels is that their modulus is as close as possible to that of the target tissue. The majority of synthetic hydrogels have used low molecular weight polymer chains whi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170504/ https://www.ncbi.nlm.nih.gov/pubmed/37026759 http://dx.doi.org/10.1021/acs.biomac.3c00058 |
_version_ | 1785039241569370112 |
---|---|
author | Wang, Xuelian Adlam, Daman J. Wang, Ran Altujjar, Amal Jia, Zhenyu Saunders, Jennifer M. Hoyland, Judith A. Rai, Nischal Saunders, Brian R. |
author_facet | Wang, Xuelian Adlam, Daman J. Wang, Ran Altujjar, Amal Jia, Zhenyu Saunders, Jennifer M. Hoyland, Judith A. Rai, Nischal Saunders, Brian R. |
author_sort | Wang, Xuelian |
collection | PubMed |
description | [Image: see text] Injectable hydrogels offer great potential to augment damaged or degenerated soft tissues. A key criterion for such gels is that their modulus is as close as possible to that of the target tissue. The majority of synthetic hydrogels have used low molecular weight polymer chains which may cause problems if they diffuse away from the injection site and/or increase the local osmotic pressure. We previously introduced a different approach of injecting preformed ultra-high molecular weight pH-responsive microgels (MGs) that interlink to form hydrogels. MGs are crosslinked polymer colloid particles that swell when the pH approaches the particle pK(a). These colloidal hydrogels are termed doubly crosslinked microgels (DX MGs). The gel moduli of previous DX MGs were much greater than that reported for human nucleus pulposus (NP) tissue of the spinal intervertebral disk. Here, we replace some of the pH-responsive poly(ethyl acrylate-co-methacrylic acid) (PEA-MAA) MGs with hydrophilic non-ionic MGs based on poly(N-vinylformamide) (NVF). We investigate the morphology and mechanical properties of these new injectable composite DX MGs and show that the mechanical properties can be tuned by systematically varying the NVF MG content. Using this approach, the gel moduli close to that for NP tissue are achieved. These injectable new pH-responsive gels exhibit low cytotoxicity. Our work provides a potential new system for minimally invasive intervertebral disk augmentation. |
format | Online Article Text |
id | pubmed-10170504 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-101705042023-05-11 Injectable Colloidal Hydrogels of N-Vinylformamide Microgels Dispersed in Covalently Interlinked pH-Responsive Methacrylic Acid-Based Microgels Wang, Xuelian Adlam, Daman J. Wang, Ran Altujjar, Amal Jia, Zhenyu Saunders, Jennifer M. Hoyland, Judith A. Rai, Nischal Saunders, Brian R. Biomacromolecules [Image: see text] Injectable hydrogels offer great potential to augment damaged or degenerated soft tissues. A key criterion for such gels is that their modulus is as close as possible to that of the target tissue. The majority of synthetic hydrogels have used low molecular weight polymer chains which may cause problems if they diffuse away from the injection site and/or increase the local osmotic pressure. We previously introduced a different approach of injecting preformed ultra-high molecular weight pH-responsive microgels (MGs) that interlink to form hydrogels. MGs are crosslinked polymer colloid particles that swell when the pH approaches the particle pK(a). These colloidal hydrogels are termed doubly crosslinked microgels (DX MGs). The gel moduli of previous DX MGs were much greater than that reported for human nucleus pulposus (NP) tissue of the spinal intervertebral disk. Here, we replace some of the pH-responsive poly(ethyl acrylate-co-methacrylic acid) (PEA-MAA) MGs with hydrophilic non-ionic MGs based on poly(N-vinylformamide) (NVF). We investigate the morphology and mechanical properties of these new injectable composite DX MGs and show that the mechanical properties can be tuned by systematically varying the NVF MG content. Using this approach, the gel moduli close to that for NP tissue are achieved. These injectable new pH-responsive gels exhibit low cytotoxicity. Our work provides a potential new system for minimally invasive intervertebral disk augmentation. American Chemical Society 2023-04-07 /pmc/articles/PMC10170504/ /pubmed/37026759 http://dx.doi.org/10.1021/acs.biomac.3c00058 Text en © 2023 American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Wang, Xuelian Adlam, Daman J. Wang, Ran Altujjar, Amal Jia, Zhenyu Saunders, Jennifer M. Hoyland, Judith A. Rai, Nischal Saunders, Brian R. Injectable Colloidal Hydrogels of N-Vinylformamide Microgels Dispersed in Covalently Interlinked pH-Responsive Methacrylic Acid-Based Microgels |
title | Injectable Colloidal
Hydrogels of N-Vinylformamide Microgels Dispersed
in Covalently Interlinked
pH-Responsive Methacrylic Acid-Based Microgels |
title_full | Injectable Colloidal
Hydrogels of N-Vinylformamide Microgels Dispersed
in Covalently Interlinked
pH-Responsive Methacrylic Acid-Based Microgels |
title_fullStr | Injectable Colloidal
Hydrogels of N-Vinylformamide Microgels Dispersed
in Covalently Interlinked
pH-Responsive Methacrylic Acid-Based Microgels |
title_full_unstemmed | Injectable Colloidal
Hydrogels of N-Vinylformamide Microgels Dispersed
in Covalently Interlinked
pH-Responsive Methacrylic Acid-Based Microgels |
title_short | Injectable Colloidal
Hydrogels of N-Vinylformamide Microgels Dispersed
in Covalently Interlinked
pH-Responsive Methacrylic Acid-Based Microgels |
title_sort | injectable colloidal
hydrogels of n-vinylformamide microgels dispersed
in covalently interlinked
ph-responsive methacrylic acid-based microgels |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170504/ https://www.ncbi.nlm.nih.gov/pubmed/37026759 http://dx.doi.org/10.1021/acs.biomac.3c00058 |
work_keys_str_mv | AT wangxuelian injectablecolloidalhydrogelsofnvinylformamidemicrogelsdispersedincovalentlyinterlinkedphresponsivemethacrylicacidbasedmicrogels AT adlamdamanj injectablecolloidalhydrogelsofnvinylformamidemicrogelsdispersedincovalentlyinterlinkedphresponsivemethacrylicacidbasedmicrogels AT wangran injectablecolloidalhydrogelsofnvinylformamidemicrogelsdispersedincovalentlyinterlinkedphresponsivemethacrylicacidbasedmicrogels AT altujjaramal injectablecolloidalhydrogelsofnvinylformamidemicrogelsdispersedincovalentlyinterlinkedphresponsivemethacrylicacidbasedmicrogels AT jiazhenyu injectablecolloidalhydrogelsofnvinylformamidemicrogelsdispersedincovalentlyinterlinkedphresponsivemethacrylicacidbasedmicrogels AT saundersjenniferm injectablecolloidalhydrogelsofnvinylformamidemicrogelsdispersedincovalentlyinterlinkedphresponsivemethacrylicacidbasedmicrogels AT hoylandjuditha injectablecolloidalhydrogelsofnvinylformamidemicrogelsdispersedincovalentlyinterlinkedphresponsivemethacrylicacidbasedmicrogels AT rainischal injectablecolloidalhydrogelsofnvinylformamidemicrogelsdispersedincovalentlyinterlinkedphresponsivemethacrylicacidbasedmicrogels AT saundersbrianr injectablecolloidalhydrogelsofnvinylformamidemicrogelsdispersedincovalentlyinterlinkedphresponsivemethacrylicacidbasedmicrogels |