Cargando…
Workflow assessment of an augmented reality application for planning of perforator flaps in plastic reconstructive surgery: Game or game changer?
OBJECTIVE: In contrast to the rising amount of financial investments for research and development in medical technology worldwide is the lack of usability and clinical readiness of the produced systems. We evaluated an augmented reality (AR) setup under development for preoperative perforator vessel...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170605/ https://www.ncbi.nlm.nih.gov/pubmed/37179745 http://dx.doi.org/10.1177/20552076231173554 |
_version_ | 1785039264446152704 |
---|---|
author | Berger, Matthias Fabian Winter, Raimund Tuca, Alexandru-Cristian Michelitsch, Birgit Schenkenfelder, Bernhard Hartmann, Robert Giretzlehner, Michael Reishofer, Gernot Kamolz, Lars-Peter Lumenta, David Benjamin |
author_facet | Berger, Matthias Fabian Winter, Raimund Tuca, Alexandru-Cristian Michelitsch, Birgit Schenkenfelder, Bernhard Hartmann, Robert Giretzlehner, Michael Reishofer, Gernot Kamolz, Lars-Peter Lumenta, David Benjamin |
author_sort | Berger, Matthias Fabian |
collection | PubMed |
description | OBJECTIVE: In contrast to the rising amount of financial investments for research and development in medical technology worldwide is the lack of usability and clinical readiness of the produced systems. We evaluated an augmented reality (AR) setup under development for preoperative perforator vessel mapping for elective autologous breast reconstruction. METHODS: In this grant-supported research pilot, we used magnetic resonance angiography data (MR-A) of the trunk to superimpose the scans on the corresponding patients with hands-free AR goggles to identify regions-of-interest for surgical planning. Perforator location was assessed using MR-A imaging (MR-A projection) and Doppler ultrasound data (3D distance) and confirmed intraoperatively in all cases. We evaluated usability (System Usability Scale, SUS), data transfer load and documented personnel hours for software development, correlation of image data, as well as processing duration to clinical readiness (time from MR-A to AR projections per scan). RESULTS: All perforator locations were confirmed intraoperatively, and we found a strong correlation between MR-A projection and 3D distance measurements (Spearman r = 0.894). The overall usability (SUS) was 67 ± 10 (=moderate to good). The presented setup for AR projections took 173 min to clinical readiness (=availability on AR device per patient). CONCLUSION: In this pilot, we calculated development investments based on project-approved grant-funded personnel hours with a moderate to good usability outcome resulting from some limitations: assessment was based on one-time testing with no previous training, a time lag of AR visualizations on the body and difficulties in spatial AR orientation. The use of AR systems can provide new opportunities for future surgical planning, but has more potential for educational (e.g., patient information) or training purposes of medical under- and postgraduates (spatial recognition of imaging data associated with anatomical structures and operative planning). We expect future usability improvements with refined user interfaces, faster AR hardware and artificial intelligence-enhanced visualization techniques. |
format | Online Article Text |
id | pubmed-10170605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-101706052023-05-11 Workflow assessment of an augmented reality application for planning of perforator flaps in plastic reconstructive surgery: Game or game changer? Berger, Matthias Fabian Winter, Raimund Tuca, Alexandru-Cristian Michelitsch, Birgit Schenkenfelder, Bernhard Hartmann, Robert Giretzlehner, Michael Reishofer, Gernot Kamolz, Lars-Peter Lumenta, David Benjamin Digit Health Pilot Study OBJECTIVE: In contrast to the rising amount of financial investments for research and development in medical technology worldwide is the lack of usability and clinical readiness of the produced systems. We evaluated an augmented reality (AR) setup under development for preoperative perforator vessel mapping for elective autologous breast reconstruction. METHODS: In this grant-supported research pilot, we used magnetic resonance angiography data (MR-A) of the trunk to superimpose the scans on the corresponding patients with hands-free AR goggles to identify regions-of-interest for surgical planning. Perforator location was assessed using MR-A imaging (MR-A projection) and Doppler ultrasound data (3D distance) and confirmed intraoperatively in all cases. We evaluated usability (System Usability Scale, SUS), data transfer load and documented personnel hours for software development, correlation of image data, as well as processing duration to clinical readiness (time from MR-A to AR projections per scan). RESULTS: All perforator locations were confirmed intraoperatively, and we found a strong correlation between MR-A projection and 3D distance measurements (Spearman r = 0.894). The overall usability (SUS) was 67 ± 10 (=moderate to good). The presented setup for AR projections took 173 min to clinical readiness (=availability on AR device per patient). CONCLUSION: In this pilot, we calculated development investments based on project-approved grant-funded personnel hours with a moderate to good usability outcome resulting from some limitations: assessment was based on one-time testing with no previous training, a time lag of AR visualizations on the body and difficulties in spatial AR orientation. The use of AR systems can provide new opportunities for future surgical planning, but has more potential for educational (e.g., patient information) or training purposes of medical under- and postgraduates (spatial recognition of imaging data associated with anatomical structures and operative planning). We expect future usability improvements with refined user interfaces, faster AR hardware and artificial intelligence-enhanced visualization techniques. SAGE Publications 2023-05-07 /pmc/articles/PMC10170605/ /pubmed/37179745 http://dx.doi.org/10.1177/20552076231173554 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Pilot Study Berger, Matthias Fabian Winter, Raimund Tuca, Alexandru-Cristian Michelitsch, Birgit Schenkenfelder, Bernhard Hartmann, Robert Giretzlehner, Michael Reishofer, Gernot Kamolz, Lars-Peter Lumenta, David Benjamin Workflow assessment of an augmented reality application for planning of perforator flaps in plastic reconstructive surgery: Game or game changer? |
title | Workflow assessment of an augmented reality application for planning of perforator flaps in plastic reconstructive surgery: Game or game changer? |
title_full | Workflow assessment of an augmented reality application for planning of perforator flaps in plastic reconstructive surgery: Game or game changer? |
title_fullStr | Workflow assessment of an augmented reality application for planning of perforator flaps in plastic reconstructive surgery: Game or game changer? |
title_full_unstemmed | Workflow assessment of an augmented reality application for planning of perforator flaps in plastic reconstructive surgery: Game or game changer? |
title_short | Workflow assessment of an augmented reality application for planning of perforator flaps in plastic reconstructive surgery: Game or game changer? |
title_sort | workflow assessment of an augmented reality application for planning of perforator flaps in plastic reconstructive surgery: game or game changer? |
topic | Pilot Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170605/ https://www.ncbi.nlm.nih.gov/pubmed/37179745 http://dx.doi.org/10.1177/20552076231173554 |
work_keys_str_mv | AT bergermatthiasfabian workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger AT winterraimund workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger AT tucaalexandrucristian workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger AT michelitschbirgit workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger AT schenkenfelderbernhard workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger AT hartmannrobert workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger AT giretzlehnermichael workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger AT reishofergernot workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger AT kamolzlarspeter workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger AT lumentadavidbenjamin workflowassessmentofanaugmentedrealityapplicationforplanningofperforatorflapsinplasticreconstructivesurgerygameorgamechanger |