Cargando…
Neural networks based on attention architecture are robust to data missingness for early predicting hospital mortality in intensive care unit patients
BACKGROUND: Although the machine learning model developed on electronic health records has become a promising method for early predicting hospital mortality, few studies focus on the approaches for handling missing data in electronic health records and evaluate model robustness to data missingness....
Autores principales: | Zeng, Zhixuan, Liu, Yang, Yao, Shuo, Liu, Jiqiang, Xiao, Bing, Liu, Chenxue, Gong, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170607/ https://www.ncbi.nlm.nih.gov/pubmed/37179744 http://dx.doi.org/10.1177/20552076231171482 |
Ejemplares similares
-
Interpretable recurrent neural network models for dynamic prediction of the extubation failure risk in patients with invasive mechanical ventilation in the intensive care unit
por: Zeng, Zhixuan, et al.
Publicado: (2022) -
On varieties of doubly robust estimators under missingness not at random with a shadow variable
por: Miao, Wang, et al.
Publicado: (2016) -
Ignoring Non-ignorable Missingness
por: Rabe-Hesketh, Sophia, et al.
Publicado: (2022) -
Reading Profiles in Multi-Site Data With Missingness
por: Eckert, Mark A., et al.
Publicado: (2018) -
Development and validation of a novel blending machine learning model for hospital mortality prediction in ICU patients with Sepsis
por: Zeng, Zhixuan, et al.
Publicado: (2021)