Cargando…

A surface molecularly imprinted electrochemical biosensor for the detection of SARS-CoV-2 spike protein by using Cu(7)S(4)-Au as built-in probe

Sensitive detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein (S protein) is of significant clinical importance in the diagnosis of COVID-19 pandemic. In this work, a surface molecularly imprinted (SMI) electrochemical biosensor is fabricated for the detection of...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Zheng-Zhi, Liu, Zixuan, Zhou, Min, Yang, Xu, Zheng, Guojun, Zhang, Hongyu, Kong, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170874/
https://www.ncbi.nlm.nih.gov/pubmed/37182264
http://dx.doi.org/10.1016/j.bioelechem.2023.108462
Descripción
Sumario:Sensitive detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein (S protein) is of significant clinical importance in the diagnosis of COVID-19 pandemic. In this work, a surface molecularly imprinted (SMI) electrochemical biosensor is fabricated for the detection of SARS-CoV-2 S protein. Cu(7)S(4)-Au is used as the built-in probe and modified on the surface of a screen-printed carbon electrode (SPCE). 4-Mercaptophenylboric acid (4-MPBA) is anchored to the surface of the Cu(7)S(4)-Au through Au–SH bonds, which can be used for the immobilization of the SARS-CoV-2 S protein template through boronate ester bonds. After that, 3-aminophenylboronic acid (3-APBA) is electropolymerized on the electrode surface and used as the molecularly imprinted polymers (MIPs). The SMI electrochemical biosensor is obtained after the elution of the SARS-CoV-2 S protein template with an acidic solution by the dissociation of the boronate ester bonds, which can be utilized for sensitive detection of the SARS-CoV-2 S protein. The developed SMI electrochemical biosensor displays high specificity, reproducibility and stability, which might be a potential and promising candidate for the clinical diagnosis of COVID-19.