Cargando…

Cloning, subcellular localization and expression of phosphate transporter gene HvPT6 of hulless barley

Deficiency of phosphate (Pi) is one of the main growth-limiting factors for crops. Generally, phosphate transporters play a key role in the uptake of P in the crops. However, current knowledge regarding the molecular mechanism underlying Pi transport is still limited. In this study, a phosphate tran...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Likun, Yao, Xiaohua, Yao, Youhua, Cui, Yongmei, Bai, Yixiong, Li, Xin, Wu, Kunlun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170964/
https://www.ncbi.nlm.nih.gov/pubmed/37179786
http://dx.doi.org/10.1515/biol-2022-0543
Descripción
Sumario:Deficiency of phosphate (Pi) is one of the main growth-limiting factors for crops. Generally, phosphate transporters play a key role in the uptake of P in the crops. However, current knowledge regarding the molecular mechanism underlying Pi transport is still limited. In this study, a phosphate transporter (PT) gene, designated HvPT6, was isolated from a cDNA library constructed from hulless barley “Kunlun 14.” The promoter of HvPT6 showed a large number of elements related to plant hormones. The expression pattern also indicated that HvPT6 was highly induced by low phosphorus, drought, abscisic acid, methyl jasmonate and gibberellin. Phylogenetic tree analysis revealed that HvPT6 belongs to the same subfamily of the major facilitator superfamily as OsPT6 from Oryza sativa. Subcellular localization of HvPT6:GFP using transient expression of Agrobacterium tumefaciens showed the green fluorescent protein signal in the membrane and nucleus of the Nicotiana benthamiana leaves. Overexpressing HvPT6 led to a longer and higher lateral root length and dry matter yield in the transgenic Arabidopsis lines under low Pi conditions, indicating that HvPT6 improves plant tolerance under Pi-deficient conditions. This study will lay a molecular basis for phosphate absorption mechanism in barley and breeding barley with high-efficient phosphate uptake.