Cargando…
Physics-inspired machine learning of localized intensive properties
Machine learning (ML) has been widely applied to chemical property prediction, most prominently for the energies and forces in molecules and materials. The strong interest in predicting energies in particular has led to a ‘local energy’-based paradigm for modern atomistic ML models, which ensures si...
Autores principales: | Chen, Ke, Kunkel, Christian, Cheng, Bingqing, Reuter, Karsten, Margraf, Johannes T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171074/ https://www.ncbi.nlm.nih.gov/pubmed/37181767 http://dx.doi.org/10.1039/d3sc00841j |
Ejemplares similares
-
Data-efficient machine learning for molecular crystal structure prediction
por: Wengert, Simon, et al.
Publicado: (2021) -
Pure non-local machine-learned density functional theory for electron correlation
por: Margraf, Johannes T., et al.
Publicado: (2021) -
Active discovery of organic semiconductors
por: Kunkel, Christian, et al.
Publicado: (2021) -
Machine learning in chemical reaction space
por: Stocker, Sina, et al.
Publicado: (2020) -
A Hybrid Machine Learning Approach for Structure Stability
Prediction in Molecular Co-crystal Screenings
por: Wengert, Simon, et al.
Publicado: (2022)