Cargando…
Recombinant production of a diffusible signal factor inhibits Salmonella invasion and animal carriage
The complex chemical environment of the intestine is defined largely by the metabolic products of the resident microbiota. Enteric pathogens, elegantly evolved to thrive in the gut, use these chemical products as signals to recognize specific niches and to promote their survival and virulence. Our p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171134/ https://www.ncbi.nlm.nih.gov/pubmed/37158497 http://dx.doi.org/10.1080/19490976.2023.2208498 |
Sumario: | The complex chemical environment of the intestine is defined largely by the metabolic products of the resident microbiota. Enteric pathogens, elegantly evolved to thrive in the gut, use these chemical products as signals to recognize specific niches and to promote their survival and virulence. Our previous work has shown that a specific class of quorum-sensing molecules found within the gut, termed diffusible signal factors (DSF), signals the repression of Salmonella tissue invasion, thus defining a means by which this pathogen recognizes its location and modulates virulence to optimize its survival. Here, we determined whether the recombinant production of a DSF could reduce Salmonella virulence in vitro and in vivo. We found that the most potent repressor of Salmonella invasion, cis-2-hexadecenoic acid (c2-HDA), could be recombinantly produced in E. coli by the addition of a single exogenous gene encoding a fatty acid enoyl-CoA dehydratase/thioesterase and that co-culture of the recombinant strain with Salmonella potently inhibited tissue invasion by repressing Salmonella genes required for this essential virulence function. Using the well characterized E. coli Nissle 1917 strain and a chicken infection model, we found that the recombinant DSF-producing strain could be stably maintained in the large intestine. Further, challenge studies demonstrated that this recombinant organism could significantly reduce Salmonella colonization of the cecum, the site of carriage in this animal species. These findings thus describe a plausible means by which Salmonella virulence may be affected in animals by in situ chemical manipulation of functions essential for colonization and virulence. |
---|