Cargando…

Crowd cluster data in the USA for analysis of human response to COVID-19 events and policies

We provide data on daily social contact intensity of clusters of people at different types of Points of Interest (POI) by zip code in Florida and California. This data is obtained by aggregating fine-scaled details of interactions of people at the spatial resolution of 10 m, which is then normalized...

Descripción completa

Detalles Bibliográficos
Autores principales: Swaminathan, B., Kang, J., Vaidya, K., Srinivasan, A., Kumar, P., Byna, S., Barbarash, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171148/
https://www.ncbi.nlm.nih.gov/pubmed/37164983
http://dx.doi.org/10.1038/s41597-023-02176-1
Descripción
Sumario:We provide data on daily social contact intensity of clusters of people at different types of Points of Interest (POI) by zip code in Florida and California. This data is obtained by aggregating fine-scaled details of interactions of people at the spatial resolution of 10 m, which is then normalized as a social contact index. We also provide the distribution of cluster sizes and average time spent in a cluster by POI type. This data will help researchers perform fine-scaled, privacy-preserving analysis of human interaction patterns to understand the drivers of the COVID-19 epidemic spread and mitigation. Current mobility datasets either provide coarse-level metrics of social distancing, such as radius of gyration at the county or province level, or traffic at a finer scale, neither of which is a direct measure of contacts between people. We use anonymized, de-identified, and privacy-enhanced location-based services (LBS) data from opted-in cell phone apps, suitably reweighted to correct for geographic heterogeneities, and identify clusters of people at non-sensitive public areas to estimate fine-scaled contacts.