Cargando…

Mixed fermentation and electrospray drying for the development of a novel stabilized wheat germ powder containing highly viable probiotic cultures

Nondairy fermented probiotic powder was developed based on stabilized wheat germ through mixed fermentation (Lactobacillus acidophilus and Lactobacillus plantarum) and electrospraying process. In the first step, the effect of mixed fermentation on lipase and lipoxygenase activity of wheat germ was i...

Descripción completa

Detalles Bibliográficos
Autores principales: Khosroshahi, Ehsan Divan, Razavi, Seyed Hadi, Kiani, Hossein, Aghakhani, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171522/
https://www.ncbi.nlm.nih.gov/pubmed/37181318
http://dx.doi.org/10.1002/fsn3.3092
Descripción
Sumario:Nondairy fermented probiotic powder was developed based on stabilized wheat germ through mixed fermentation (Lactobacillus acidophilus and Lactobacillus plantarum) and electrospraying process. In the first step, the effect of mixed fermentation on lipase and lipoxygenase activity of wheat germ was investigated. The results showed a significant reduction in the activity of both enzymes (82.72% for lipase and 72% for lipoxygenase), therefore, mixed fermentation effectively stabilizes the wheat germ. In the next step, after the preparation of the solutions for drying process and investigating the physical properties (surface tension, electrical conductivity, and viscosity) of the solutions, the electrosprayability of the samples was evaluated at different conditions and revealed that 18 kV applying voltage, 0.3 flow rate, and 12 cm distance between tip to collector was the best for electrospraying the 20% solution of fermented wheat germ with morphologically most semi‐uniform particles. Finally, the viability of the probiotics after drying process and during the storage at 25°C was examined. The number of initial cells counted as 14.48 ± 0.2 log cfu/g and the viability studies showed 0.55 log cfu/g decrease in the number of viable bacteria from initial count as a result of the electrospraying process. Furthermore, 7.86 ± 0.03 log cfu/g in freeze‐dried and 9.05 ± 0.45 log cfu/g in electrosprayed samples survived after 70 days of storage.