Cargando…
Evaluation of boundaries between mood and psychosis disorder using dynamic functional network connectivity (dFNC) via deep learning classification
The validity and reliability of diagnoses in psychiatry is a challenging topic in mental health. The current mental health categorization is based primarily on symptoms and clinical course and is not biologically validated. Among multiple ongoing efforts, neurological observations alongside clinical...
Autores principales: | Rokham, Hooman, Falakshahi, Haleh, Fu, Zening, Pearlson, Godfrey, Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171526/ https://www.ncbi.nlm.nih.gov/pubmed/36919656 http://dx.doi.org/10.1002/hbm.26273 |
Ejemplares similares
-
Multiframe Evolving Dynamic Functional Connectivity (EVOdFNC): A Method for Constructing and Investigating Functional Brain Motifs
por: Miller, Robyn L., et al.
Publicado: (2022) -
Identifying commonality and specificity across psychosis sub-groups via classification based on features from dynamic connectivity analysis
por: Du, Yuhui, et al.
Publicado: (2020) -
Path analysis: A method to estimate altered pathways in time-varying graphs of neuroimaging data
por: Falakshahi, Haleh, et al.
Publicado: (2022) -
Classification of schizophrenia patients based on resting-state functional network connectivity
por: Arbabshirani, Mohammad R., et al.
Publicado: (2013) -
Whole-Brain Functional Network Connectivity Abnormalities in Affective and Non-Affective Early Phase Psychosis
por: Fu, Zening, et al.
Publicado: (2021)