Cargando…
Mapping and decoding cortical engagement during motor imagery, mental arithmetic, and silent word generation using MEG
Accurate quantification of cortical engagement during mental imagery tasks remains a challenging brain‐imaging problem with immediate relevance to developing brain–computer interfaces. We analyzed magnetoencephalography (MEG) data from 18 individuals completing cued motor imagery, mental arithmetic,...
Autores principales: | Youssofzadeh, Vahab, Roy, Sujit, Chowdhury, Anirban, Izadysadr, Aqil, Parkkonen, Lauri, Raghavan, Manoj, Prasad, Girijesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171552/ https://www.ncbi.nlm.nih.gov/pubmed/36987698 http://dx.doi.org/10.1002/hbm.26284 |
Ejemplares similares
-
Across-subject offline decoding of motor imagery from MEG and EEG
por: Halme, Hanna-Leena, et al.
Publicado: (2018) -
Publisher Correction: Across-subject offline decoding of motor imagery from MEG and EEG
por: Halme, Hanna-Leena, et al.
Publicado: (2018) -
Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces
por: Roy, Sujit, et al.
Publicado: (2020) -
Comparing Features for Classification of MEG Responses to Motor Imagery
por: Halme, Hanna-Leena, et al.
Publicado: (2016) -
Adaptive neural network classifier for decoding MEG signals
por: Zubarev, Ivan, et al.
Publicado: (2019)