Cargando…
Guidance for good practice in the application of machine learning in development of toxicological quantitative structure-activity relationships (QSARs)
Recent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessm...
Autores principales: | Belfield, Samuel J., Cronin, Mark T.D., Enoch, Steven J., Firman, James W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171609/ https://www.ncbi.nlm.nih.gov/pubmed/37163504 http://dx.doi.org/10.1371/journal.pone.0282924 |
Ejemplares similares
-
Integration of QSAR and in vitro toxicology.
por: Barratt, M D
Publicado: (1998) -
Approaches to developing alternative and predictive toxicology based on PBPK/PD and QSAR modeling.
por: Yang, R S, et al.
Publicado: (1998) -
In Silico Toxicology Data Resources to Support Read-Across and (Q)SAR
por: Pawar, Gopal, et al.
Publicado: (2019) -
t(4) report: Toward Good Read-Across Practice (GRAP) Guidance
por: Ball, Nicholas, et al.
Publicado: (2016) -
Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method
por: Wei, Yu, et al.
Publicado: (2019)