Cargando…

Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS(2) for sulfur-based aqueous batteries

Sulfur-based aqueous batteries (SABs) are deemed promising candidates for safe, low-cost, and high-capacity energy storage. However, despite their high theoretical capacity, achieving high reversible value remains a great challenge due to the thermodynamic and kinetics problems of elemental sulfur....

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Zhoudong, Wang, Boya, Chen, Yongjin, Zhou, Wanhai, Li, Hongpeng, Zhao, Ruizheng, Li, Xinran, Zhang, Tengsheng, Bu, Fanxing, Zhao, Zaiwang, Li, Wei, Chao, Dongliang, Zhao, Dongyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171633/
https://www.ncbi.nlm.nih.gov/pubmed/37181097
http://dx.doi.org/10.1093/nsr/nwac268
_version_ 1785039463003455488
author Yang, Zhoudong
Wang, Boya
Chen, Yongjin
Zhou, Wanhai
Li, Hongpeng
Zhao, Ruizheng
Li, Xinran
Zhang, Tengsheng
Bu, Fanxing
Zhao, Zaiwang
Li, Wei
Chao, Dongliang
Zhao, Dongyuan
author_facet Yang, Zhoudong
Wang, Boya
Chen, Yongjin
Zhou, Wanhai
Li, Hongpeng
Zhao, Ruizheng
Li, Xinran
Zhang, Tengsheng
Bu, Fanxing
Zhao, Zaiwang
Li, Wei
Chao, Dongliang
Zhao, Dongyuan
author_sort Yang, Zhoudong
collection PubMed
description Sulfur-based aqueous batteries (SABs) are deemed promising candidates for safe, low-cost, and high-capacity energy storage. However, despite their high theoretical capacity, achieving high reversible value remains a great challenge due to the thermodynamic and kinetics problems of elemental sulfur. Here, the reversible six-electron redox electrochemistry is constructed by activating the sulfur oxidation reaction (SOR) process of the elaborate mesocrystal NiS(2) (M-NiS(2)). Through the unique 6e(−) solid-to-solid conversion mechanism, SOR efficiency can reach an unprecedented degree of ca. 96.0%. The SOR efficiency is further revealed to be closely associated with the kinetics feasibility and thermodynamic stability of the M-NiS(2) intermedium in the formation of elemental sulfur. Benefiting from the boosted SOR, compared with the bulk electrode, the M-NiS(2) electrode exhibits a high reversible capacity (1258 mAh g(−1)), ultrafast reaction kinetics (932 mAh g(−1) at 12 A g(−1)), and long-term cyclability (2000 cycles at 20 A g(−1)). As a proof of concept, a new M-NiS(2)‖Zn hybrid aqueous battery exhibits an output voltage of 1.60 V and an energy density of 722.4 Wh kg(cath)(−1), which opens a new opportunity for the development of high-energy aqueous batteries.
format Online
Article
Text
id pubmed-10171633
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-101716332023-05-11 Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS(2) for sulfur-based aqueous batteries Yang, Zhoudong Wang, Boya Chen, Yongjin Zhou, Wanhai Li, Hongpeng Zhao, Ruizheng Li, Xinran Zhang, Tengsheng Bu, Fanxing Zhao, Zaiwang Li, Wei Chao, Dongliang Zhao, Dongyuan Natl Sci Rev Research Article Sulfur-based aqueous batteries (SABs) are deemed promising candidates for safe, low-cost, and high-capacity energy storage. However, despite their high theoretical capacity, achieving high reversible value remains a great challenge due to the thermodynamic and kinetics problems of elemental sulfur. Here, the reversible six-electron redox electrochemistry is constructed by activating the sulfur oxidation reaction (SOR) process of the elaborate mesocrystal NiS(2) (M-NiS(2)). Through the unique 6e(−) solid-to-solid conversion mechanism, SOR efficiency can reach an unprecedented degree of ca. 96.0%. The SOR efficiency is further revealed to be closely associated with the kinetics feasibility and thermodynamic stability of the M-NiS(2) intermedium in the formation of elemental sulfur. Benefiting from the boosted SOR, compared with the bulk electrode, the M-NiS(2) electrode exhibits a high reversible capacity (1258 mAh g(−1)), ultrafast reaction kinetics (932 mAh g(−1) at 12 A g(−1)), and long-term cyclability (2000 cycles at 20 A g(−1)). As a proof of concept, a new M-NiS(2)‖Zn hybrid aqueous battery exhibits an output voltage of 1.60 V and an energy density of 722.4 Wh kg(cath)(−1), which opens a new opportunity for the development of high-energy aqueous batteries. Oxford University Press 2022-11-25 /pmc/articles/PMC10171633/ /pubmed/37181097 http://dx.doi.org/10.1093/nsr/nwac268 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Yang, Zhoudong
Wang, Boya
Chen, Yongjin
Zhou, Wanhai
Li, Hongpeng
Zhao, Ruizheng
Li, Xinran
Zhang, Tengsheng
Bu, Fanxing
Zhao, Zaiwang
Li, Wei
Chao, Dongliang
Zhao, Dongyuan
Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS(2) for sulfur-based aqueous batteries
title Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS(2) for sulfur-based aqueous batteries
title_full Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS(2) for sulfur-based aqueous batteries
title_fullStr Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS(2) for sulfur-based aqueous batteries
title_full_unstemmed Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS(2) for sulfur-based aqueous batteries
title_short Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS(2) for sulfur-based aqueous batteries
title_sort activating sulfur oxidation reaction via six-electron redox mesocrystal nis(2) for sulfur-based aqueous batteries
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171633/
https://www.ncbi.nlm.nih.gov/pubmed/37181097
http://dx.doi.org/10.1093/nsr/nwac268
work_keys_str_mv AT yangzhoudong activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT wangboya activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT chenyongjin activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT zhouwanhai activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT lihongpeng activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT zhaoruizheng activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT lixinran activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT zhangtengsheng activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT bufanxing activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT zhaozaiwang activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT liwei activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT chaodongliang activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries
AT zhaodongyuan activatingsulfuroxidationreactionviasixelectronredoxmesocrystalnis2forsulfurbasedaqueousbatteries