Cargando…
Bayesian composite quantile regression for the single-index model
By using a Gaussian process prior and a location-scale mixture representation of the asymmetric Laplace distribution, we develop a Bayesian analysis for the composite quantile single-index regression model. The posterior distributions for the unknown parameters are derived, and the Markov chain Mont...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171657/ https://www.ncbi.nlm.nih.gov/pubmed/37163496 http://dx.doi.org/10.1371/journal.pone.0285277 |
_version_ | 1785039468761186304 |
---|---|
author | Yuan, Xiaohui Xiang, Xuefei Zhang, Xinran |
author_facet | Yuan, Xiaohui Xiang, Xuefei Zhang, Xinran |
author_sort | Yuan, Xiaohui |
collection | PubMed |
description | By using a Gaussian process prior and a location-scale mixture representation of the asymmetric Laplace distribution, we develop a Bayesian analysis for the composite quantile single-index regression model. The posterior distributions for the unknown parameters are derived, and the Markov chain Monte Carlo sampling algorithms are also given. The proposed method is illustrated by three simulation examples and a real dataset. |
format | Online Article Text |
id | pubmed-10171657 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-101716572023-05-11 Bayesian composite quantile regression for the single-index model Yuan, Xiaohui Xiang, Xuefei Zhang, Xinran PLoS One Research Article By using a Gaussian process prior and a location-scale mixture representation of the asymmetric Laplace distribution, we develop a Bayesian analysis for the composite quantile single-index regression model. The posterior distributions for the unknown parameters are derived, and the Markov chain Monte Carlo sampling algorithms are also given. The proposed method is illustrated by three simulation examples and a real dataset. Public Library of Science 2023-05-10 /pmc/articles/PMC10171657/ /pubmed/37163496 http://dx.doi.org/10.1371/journal.pone.0285277 Text en © 2023 Yuan et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yuan, Xiaohui Xiang, Xuefei Zhang, Xinran Bayesian composite quantile regression for the single-index model |
title | Bayesian composite quantile regression for the single-index model |
title_full | Bayesian composite quantile regression for the single-index model |
title_fullStr | Bayesian composite quantile regression for the single-index model |
title_full_unstemmed | Bayesian composite quantile regression for the single-index model |
title_short | Bayesian composite quantile regression for the single-index model |
title_sort | bayesian composite quantile regression for the single-index model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171657/ https://www.ncbi.nlm.nih.gov/pubmed/37163496 http://dx.doi.org/10.1371/journal.pone.0285277 |
work_keys_str_mv | AT yuanxiaohui bayesiancompositequantileregressionforthesingleindexmodel AT xiangxuefei bayesiancompositequantileregressionforthesingleindexmodel AT zhangxinran bayesiancompositequantileregressionforthesingleindexmodel |