Cargando…
Emergence of time persistence in a data-driven neural network model
Establishing accurate as well as interpretable models of network activity is an open challenge in systems neuroscience. Here, we infer an energy-based model of the anterior rhombencephalic turning region (ARTR), a circuit that controls zebrafish swimming statistics, using functional recordings of th...
Autores principales: | Wolf, Sebastien, Le Goc, Guillaume, Debrégeas, Georges, Cocco, Simona, Monasson, Rémi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171858/ https://www.ncbi.nlm.nih.gov/pubmed/36916902 http://dx.doi.org/10.7554/eLife.79541 |
Ejemplares similares
-
Neural assemblies uncovered by generative modeling explain whole-brain activity statistics and reflect structural connectivity
por: van der Plas, Thijs L, et al.
Publicado: (2023) -
Integration and multiplexing of positional and contextual information by the hippocampal network
por: Posani, Lorenzo, et al.
Publicado: (2018) -
Adaptive cluster algorithm to infer Boltzmann machines from multi-electrode recording data
por: Cocco, Simona, et al.
Publicado: (2011) -
From behavior to circuit modeling of light-seeking navigation in zebrafish larvae
por: Karpenko, Sophia, et al.
Publicado: (2020) -
Inferred Ising model unveils potentiation of pairwise neural interactions and replay of rule-learning related neural activity
por: Ferrari, Ulisse, et al.
Publicado: (2013)