Cargando…
LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data
MOTIVATION: From a systematic perspective, it is crucial to infer and analyze gene regulatory network (GRN) from high-throughput single-cell RNA sequencing data. However, most existing GRN inference methods mainly focus on the network topology, only few of them consider how to explicitly describe th...
Autores principales: | Li, Lingyu, Sun, Liangjie, Chen, Guangyi, Wong, Chi-Wing, Ching, Wai-Ki, Liu, Zhi-Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172039/ https://www.ncbi.nlm.nih.gov/pubmed/37079737 http://dx.doi.org/10.1093/bioinformatics/btad256 |
Ejemplares similares
-
Review and assessment of Boolean approaches for inference of gene regulatory networks
por: Pušnik, Žiga, et al.
Publicado: (2022) -
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007) -
Boolean networks using the chi-square test for inferring large-scale gene regulatory networks
por: Kim, Haseong, et al.
Publicado: (2007) -
Inference of Boolean Networks Using Sensitivity Regularization
por: Liu, Wenbin, et al.
Publicado: (2008) -
Phenotype control techniques for Boolean gene regulatory networks
por: Plaugher, Daniel, et al.
Publicado: (2023)