Cargando…
A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet
Semantic segmentation of remote sensing imagery (RSI) is critical in many domains due to the diverse landscapes and different sizes of geo-objects that RSI contains, making semantic segmentation challenging. In this paper, a convolutional network, named Adaptive Feature Fusion UNet (AFF-UNet), is pr...
Autores principales: | Wang, Xiaolei, Hu, Zirong, Shi, Shouhai, Hou, Mei, Xu, Lei, Zhang, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172362/ https://www.ncbi.nlm.nih.gov/pubmed/37165042 http://dx.doi.org/10.1038/s41598-023-34379-2 |
Ejemplares similares
-
Semantic Segmentation of Hyperspectral Remote Sensing Images Based on PSE-UNet Model
por: Li, Jiaju, et al.
Publicado: (2022) -
C-UNet: Complement UNet for Remote Sensing Road Extraction
por: Hou, Yuewu, et al.
Publicado: (2021) -
Active Learning with Bayesian UNet for Efficient Semantic Image Segmentation
por: Saidu, Isah Charles, et al.
Publicado: (2021) -
RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning
por: Wu, Zezhi, et al.
Publicado: (2023) -
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023)