Cargando…

Comparative morphology and plant volatile responses of antennal sensilla in Cinara cedri (Hemiptera: Lachninae), Eriosoma lanigerum (Hemiptera: Eriosomatinae), and Therioaphis trifolii (Hemiptera: Calaphidinae)

Olfaction is important for mediating aphid behaviors and is involved in host location and mating. Antennal primary rhinaria play a key role in the chemoreception of aphids. The function of the peripheral olfactory system in the subfamily Aphidinae has been intensively studied, but little is known ab...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Lu-Lu, Wang, Bing, Shen, Jie, Wang, Gui-Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172507/
https://www.ncbi.nlm.nih.gov/pubmed/37180945
http://dx.doi.org/10.3389/fncel.2023.1162349
_version_ 1785039630917173248
author Yang, Lu-Lu
Wang, Bing
Shen, Jie
Wang, Gui-Rong
author_facet Yang, Lu-Lu
Wang, Bing
Shen, Jie
Wang, Gui-Rong
author_sort Yang, Lu-Lu
collection PubMed
description Olfaction is important for mediating aphid behaviors and is involved in host location and mating. Antennal primary rhinaria play a key role in the chemoreception of aphids. The function of the peripheral olfactory system in the subfamily Aphidinae has been intensively studied, but little is known about other subfamilies of Aphididae. Therefore, three aphid species were selected to study the olfactory reception of plant volatiles: Cinara cedri (Lachninae), Eriosoma lanigerum (Eriosomatinae), and Therioaphis trifolii (Calaphidinae). In this study, the morphology and distribution of the antennal sensilla of apterous adults were observed by scanning electron microscopy. Three morphological types were identified (placoid sensilla, coeloconic sensilla, and trichoid sensilla); the first two were distributed on the antennal primary rhinaria. A pattern of primary rhinaria in C. cedri was found that differed from that of E. lanigerum and T. trifolii and consists of 1 large placoid sensillum (LP) on the 4th segment, 2 LPs on the 5th segment, and a group of sensilla on the 6th antennal segments. Later, we recorded and compared neuronal responses of the distinct placoid sensilla in the primary rhinaria of the three aphid species to 18 plant volatiles using a single sensillum recording (SSR) technique. The results indicated that the functional profiles based on the tested odorants of the primary rhinaria of the three investigated aphid species were clustered into three classes, and exhibited excitatory responses to certain types of odorants, especially terpenes. In C. cedri, the ORNs in LP6 exhibited the highest responses to (±)-citronellal across all tested chemicals, and showed greater sensitivity to (±)-citronellal than to (+)-limonene. ORNs in LP5 were partially responsive to α-pinene and (–)-β-pinene in a dose-dependent manner. Across different species, E. lanigerum showed significantly stronger neuronal responses of LP5 to several terpenes, such as (–)-linalool and α-terpineol, compared to other species. In T. trifolii, the neuronal activities in LP6 showed a greater response to methyl salicylate as compared to LP5. Overall, our results preliminarily illustrate the functional divergence of ORNs in the primary rhinaria of aphids from three subfamilies of Aphididae and provide a basis for better understanding the mechanism of olfactory recognition in aphids.
format Online
Article
Text
id pubmed-10172507
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-101725072023-05-12 Comparative morphology and plant volatile responses of antennal sensilla in Cinara cedri (Hemiptera: Lachninae), Eriosoma lanigerum (Hemiptera: Eriosomatinae), and Therioaphis trifolii (Hemiptera: Calaphidinae) Yang, Lu-Lu Wang, Bing Shen, Jie Wang, Gui-Rong Front Cell Neurosci Cellular Neuroscience Olfaction is important for mediating aphid behaviors and is involved in host location and mating. Antennal primary rhinaria play a key role in the chemoreception of aphids. The function of the peripheral olfactory system in the subfamily Aphidinae has been intensively studied, but little is known about other subfamilies of Aphididae. Therefore, three aphid species were selected to study the olfactory reception of plant volatiles: Cinara cedri (Lachninae), Eriosoma lanigerum (Eriosomatinae), and Therioaphis trifolii (Calaphidinae). In this study, the morphology and distribution of the antennal sensilla of apterous adults were observed by scanning electron microscopy. Three morphological types were identified (placoid sensilla, coeloconic sensilla, and trichoid sensilla); the first two were distributed on the antennal primary rhinaria. A pattern of primary rhinaria in C. cedri was found that differed from that of E. lanigerum and T. trifolii and consists of 1 large placoid sensillum (LP) on the 4th segment, 2 LPs on the 5th segment, and a group of sensilla on the 6th antennal segments. Later, we recorded and compared neuronal responses of the distinct placoid sensilla in the primary rhinaria of the three aphid species to 18 plant volatiles using a single sensillum recording (SSR) technique. The results indicated that the functional profiles based on the tested odorants of the primary rhinaria of the three investigated aphid species were clustered into three classes, and exhibited excitatory responses to certain types of odorants, especially terpenes. In C. cedri, the ORNs in LP6 exhibited the highest responses to (±)-citronellal across all tested chemicals, and showed greater sensitivity to (±)-citronellal than to (+)-limonene. ORNs in LP5 were partially responsive to α-pinene and (–)-β-pinene in a dose-dependent manner. Across different species, E. lanigerum showed significantly stronger neuronal responses of LP5 to several terpenes, such as (–)-linalool and α-terpineol, compared to other species. In T. trifolii, the neuronal activities in LP6 showed a greater response to methyl salicylate as compared to LP5. Overall, our results preliminarily illustrate the functional divergence of ORNs in the primary rhinaria of aphids from three subfamilies of Aphididae and provide a basis for better understanding the mechanism of olfactory recognition in aphids. Frontiers Media S.A. 2023-04-27 /pmc/articles/PMC10172507/ /pubmed/37180945 http://dx.doi.org/10.3389/fncel.2023.1162349 Text en Copyright © 2023 Yang, Wang, Shen and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cellular Neuroscience
Yang, Lu-Lu
Wang, Bing
Shen, Jie
Wang, Gui-Rong
Comparative morphology and plant volatile responses of antennal sensilla in Cinara cedri (Hemiptera: Lachninae), Eriosoma lanigerum (Hemiptera: Eriosomatinae), and Therioaphis trifolii (Hemiptera: Calaphidinae)
title Comparative morphology and plant volatile responses of antennal sensilla in Cinara cedri (Hemiptera: Lachninae), Eriosoma lanigerum (Hemiptera: Eriosomatinae), and Therioaphis trifolii (Hemiptera: Calaphidinae)
title_full Comparative morphology and plant volatile responses of antennal sensilla in Cinara cedri (Hemiptera: Lachninae), Eriosoma lanigerum (Hemiptera: Eriosomatinae), and Therioaphis trifolii (Hemiptera: Calaphidinae)
title_fullStr Comparative morphology and plant volatile responses of antennal sensilla in Cinara cedri (Hemiptera: Lachninae), Eriosoma lanigerum (Hemiptera: Eriosomatinae), and Therioaphis trifolii (Hemiptera: Calaphidinae)
title_full_unstemmed Comparative morphology and plant volatile responses of antennal sensilla in Cinara cedri (Hemiptera: Lachninae), Eriosoma lanigerum (Hemiptera: Eriosomatinae), and Therioaphis trifolii (Hemiptera: Calaphidinae)
title_short Comparative morphology and plant volatile responses of antennal sensilla in Cinara cedri (Hemiptera: Lachninae), Eriosoma lanigerum (Hemiptera: Eriosomatinae), and Therioaphis trifolii (Hemiptera: Calaphidinae)
title_sort comparative morphology and plant volatile responses of antennal sensilla in cinara cedri (hemiptera: lachninae), eriosoma lanigerum (hemiptera: eriosomatinae), and therioaphis trifolii (hemiptera: calaphidinae)
topic Cellular Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172507/
https://www.ncbi.nlm.nih.gov/pubmed/37180945
http://dx.doi.org/10.3389/fncel.2023.1162349
work_keys_str_mv AT yanglulu comparativemorphologyandplantvolatileresponsesofantennalsensillaincinaracedrihemipteralachninaeeriosomalanigerumhemipteraeriosomatinaeandtherioaphistrifoliihemipteracalaphidinae
AT wangbing comparativemorphologyandplantvolatileresponsesofantennalsensillaincinaracedrihemipteralachninaeeriosomalanigerumhemipteraeriosomatinaeandtherioaphistrifoliihemipteracalaphidinae
AT shenjie comparativemorphologyandplantvolatileresponsesofantennalsensillaincinaracedrihemipteralachninaeeriosomalanigerumhemipteraeriosomatinaeandtherioaphistrifoliihemipteracalaphidinae
AT wangguirong comparativemorphologyandplantvolatileresponsesofantennalsensillaincinaracedrihemipteralachninaeeriosomalanigerumhemipteraeriosomatinaeandtherioaphistrifoliihemipteracalaphidinae