Cargando…

Investigation of aroma characteristics of seven Chinese commercial sunflower seed oils using a combination of descriptive Analysis, GC-quadrupole-MS, and GC-Orbitrap-MS

The aroma characteristics of seven commercial Chinese sunflower seed oils were investigated in this study using descriptive analysis, headspace solid-phase microextraction coupled with GC-quadrupole-MS (LRMS, low-resolution mass spectrometry), and GC-Orbitrap-MS (HRMS, high-resolution mass spectrome...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jiani, Zhao, Huimin, Chang, Xiaomin, Li, Xiaolong, Zhang, Yu, Zhu, Baoqing, Wang, Xiangyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172861/
https://www.ncbi.nlm.nih.gov/pubmed/37179977
http://dx.doi.org/10.1016/j.fochx.2023.100690
Descripción
Sumario:The aroma characteristics of seven commercial Chinese sunflower seed oils were investigated in this study using descriptive analysis, headspace solid-phase microextraction coupled with GC-quadrupole-MS (LRMS, low-resolution mass spectrometry), and GC-Orbitrap-MS (HRMS, high-resolution mass spectrometry). GC-Orbitrap-MS quantified 96 compounds, including 18 alcohols, 12 esters, 7 ketones, 20 terpenoids, 11 pyrazines, 6 aldehydes, 6 furans, 6 benzene ring-containing compounds, 3 sulfides, 2 alkanes, and 5 nitrogen-containing compounds. Moreover, 22 compounds including 5 acids, 1 amide, and 16 aldehydes were quantified using GC-Quadrupole-MS. To our knowledge, 23 volatile compounds were reported for the first time in sunflower seed oil. All the seven samples were found to have a ‘roasted sunflower seeds’ note, ‘sunflower seeds aroma’ note and ‘burnt aroma’ note and only five of them had ‘fried instant noodles’ note, three had ‘sweet’ note and two had ‘puffed food’ note. Partial least squares regression was used to screen the candidate key volatiles that caused the aroma differences among these seven samples. It was observed that ‘roasted sunflower seeds’ note was positively correlated with 1-octen-3-ol, n-heptadehyde and dimethyl sulfone, whereas the ‘fried instant noodles’ and ‘puffed food’ demonstrated a positive correlation with pentanal, 3-methylbutanal, hexanal, (E)-2-hexenal and 2-pentylfuran. Our findings provide information to the producers and developers for quality control and improvement of sunflower seed oil.