Cargando…
SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing through smad6/IκB/p65 signaling pathway
Macrophages preferentially polarize to the anti-inflammatory M2 subtype in response to alterations in the wound microenvironment. SUMO-specific protease 3 (SENP3), a SUMO-specific protease, has been proven to regulate inflammation in macrophages by deSUMOylating substrate proteins, but its contribut...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172869/ https://www.ncbi.nlm.nih.gov/pubmed/37180935 http://dx.doi.org/10.1016/j.heliyon.2023.e15584 |
_version_ | 1785039707616313344 |
---|---|
author | Ma, Yiwen Hu, Jiateng Xue, Xingjuan Gu, Jianmin Pan, Yuyan Yang, Jun |
author_facet | Ma, Yiwen Hu, Jiateng Xue, Xingjuan Gu, Jianmin Pan, Yuyan Yang, Jun |
author_sort | Ma, Yiwen |
collection | PubMed |
description | Macrophages preferentially polarize to the anti-inflammatory M2 subtype in response to alterations in the wound microenvironment. SUMO-specific protease 3 (SENP3), a SUMO-specific protease, has been proven to regulate inflammation in macrophages by deSUMOylating substrate proteins, but its contribution to wound healing is poorly defined. Here, we report that SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing in macrophage-specific SENP3 knockout mice. Notably, it affects wound healing through the suppression of inflammation and promotion of angiogenesis and collagen remodeling. Mechanistically, we identified that SENP3 knockout facilitates M2 polarization through the Smad6/IκB/p65 signaling pathway. SENP3 knockout elevated the expression of Smad6 and IκB. Moreover, Smad6 silencing enhanced the expression of p-p65 and proinflammatory cytokines while inhibiting the level of IκB. Our study revealed the essential role of SENP3 in M2 polarization and wound healing, which offers a theoretical basis for further research and a therapeutic strategy for wound healing. |
format | Online Article Text |
id | pubmed-10172869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-101728692023-05-12 SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing through smad6/IκB/p65 signaling pathway Ma, Yiwen Hu, Jiateng Xue, Xingjuan Gu, Jianmin Pan, Yuyan Yang, Jun Heliyon Research Article Macrophages preferentially polarize to the anti-inflammatory M2 subtype in response to alterations in the wound microenvironment. SUMO-specific protease 3 (SENP3), a SUMO-specific protease, has been proven to regulate inflammation in macrophages by deSUMOylating substrate proteins, but its contribution to wound healing is poorly defined. Here, we report that SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing in macrophage-specific SENP3 knockout mice. Notably, it affects wound healing through the suppression of inflammation and promotion of angiogenesis and collagen remodeling. Mechanistically, we identified that SENP3 knockout facilitates M2 polarization through the Smad6/IκB/p65 signaling pathway. SENP3 knockout elevated the expression of Smad6 and IκB. Moreover, Smad6 silencing enhanced the expression of p-p65 and proinflammatory cytokines while inhibiting the level of IκB. Our study revealed the essential role of SENP3 in M2 polarization and wound healing, which offers a theoretical basis for further research and a therapeutic strategy for wound healing. Elsevier 2023-04-25 /pmc/articles/PMC10172869/ /pubmed/37180935 http://dx.doi.org/10.1016/j.heliyon.2023.e15584 Text en © 2023 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Ma, Yiwen Hu, Jiateng Xue, Xingjuan Gu, Jianmin Pan, Yuyan Yang, Jun SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing through smad6/IκB/p65 signaling pathway |
title | SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing through smad6/IκB/p65 signaling pathway |
title_full | SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing through smad6/IκB/p65 signaling pathway |
title_fullStr | SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing through smad6/IκB/p65 signaling pathway |
title_full_unstemmed | SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing through smad6/IκB/p65 signaling pathway |
title_short | SENP3 deletion promotes M2 macrophage polarization and accelerates wound healing through smad6/IκB/p65 signaling pathway |
title_sort | senp3 deletion promotes m2 macrophage polarization and accelerates wound healing through smad6/iκb/p65 signaling pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10172869/ https://www.ncbi.nlm.nih.gov/pubmed/37180935 http://dx.doi.org/10.1016/j.heliyon.2023.e15584 |
work_keys_str_mv | AT mayiwen senp3deletionpromotesm2macrophagepolarizationandaccelerateswoundhealingthroughsmad6ikbp65signalingpathway AT hujiateng senp3deletionpromotesm2macrophagepolarizationandaccelerateswoundhealingthroughsmad6ikbp65signalingpathway AT xuexingjuan senp3deletionpromotesm2macrophagepolarizationandaccelerateswoundhealingthroughsmad6ikbp65signalingpathway AT gujianmin senp3deletionpromotesm2macrophagepolarizationandaccelerateswoundhealingthroughsmad6ikbp65signalingpathway AT panyuyan senp3deletionpromotesm2macrophagepolarizationandaccelerateswoundhealingthroughsmad6ikbp65signalingpathway AT yangjun senp3deletionpromotesm2macrophagepolarizationandaccelerateswoundhealingthroughsmad6ikbp65signalingpathway |