Cargando…
Accuracy of Artificial Intelligence–Based Automated Quantitative Coronary Angiography Compared to Intravascular Ultrasound: Retrospective Cohort Study
BACKGROUND: An accurate quantitative analysis of coronary artery stenotic lesions is essential to make optimal clinical decisions. Recent advances in computer vision and machine learning technology have enabled the automated analysis of coronary angiography. OBJECTIVE: The aim of this paper is to va...
Autores principales: | Moon, In Tae, Kim, Sun-Hwa, Chin, Jung Yeon, Park, Sung Hun, Yoon, Chang-Hwan, Youn, Tae-Jin, Chae, In-Ho, Kang, Si-Hyuck |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173041/ https://www.ncbi.nlm.nih.gov/pubmed/37099368 http://dx.doi.org/10.2196/45299 |
Ejemplares similares
-
Accuracy of artificial intelligence software for CT angiography in stroke
por: Mair, Grant, et al.
Publicado: (2023) -
Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence
por: Bao, Han, et al.
Publicado: (2023) -
Optimization of Stent Deployment by Intravascular Ultrasound
por: Yoon, Hyuck-Jun, et al.
Publicado: (2012) -
Intravascular Ultrasound and Angiographic Predictors of In-Stent Restenosis of Chronic Total Occlusion Lesions
por: Kang, Jeehoon, et al.
Publicado: (2015) -
Intravascular imaging analysis of a drug-eluting balloon followed by a bare metal stent compared to a drug-eluting stent for treatment of de novo lesions
por: Choi, Wonsuk, et al.
Publicado: (2019)