Cargando…

Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles

Liquid biopsy is a technology that exhibits potential to detect cancer early, monitor therapies, and predict cancer prognosis due to its unique characteristics, including noninvasive sampling and real-time analysis. Circulating tumor cells (CTCs) and extracellular vesicles (EVs) are two important co...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Duanping, Ma, Ying, Wu, Maoqiang, Chen, Zuanguang, Zhang, Luyong, Lu, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Xi'an Jiaotong University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173182/
https://www.ncbi.nlm.nih.gov/pubmed/37181295
http://dx.doi.org/10.1016/j.jpha.2023.03.001
Descripción
Sumario:Liquid biopsy is a technology that exhibits potential to detect cancer early, monitor therapies, and predict cancer prognosis due to its unique characteristics, including noninvasive sampling and real-time analysis. Circulating tumor cells (CTCs) and extracellular vesicles (EVs) are two important components of circulating targets, carrying substantial disease-related molecular information and playing a key role in liquid biopsy. Aptamers are single-stranded oligonucleotides with superior affinity and specificity, and they can bind to targets by folding into unique tertiary structures. Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools. In this review, we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches. Then, we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection. Finally, we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications.